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We discuss the impact of the physical implementation of a quantum computer on its
computational efficiency, using computer simulations of physical models of quantum com-
puter hardware. We address the computational efficiency of practical procedures to extract
the results of a quantum computation from the wave function respresenting the final state
of the quantum computer.

§1. Introduction

Theoretical work has shown that a quantum computer (QC) has the poten-
tial of solving certain computationally hard problems such as factoring integers 1)

and searching databases much faster than a conventional computer 2). These two
algorithms are concrete examples of quantum algorithms (QAs) that exploit the
theoretical power of a QC.

At any point in time, the state of a conventional computer is represented by
the two possible states of N two-state systems (bits). A conventional computer can
be in only one of the 2N states simultaneously. Conceptually, operations on these
states corresponds to 2N × 2N matrices that have no special properties. On the
other hand, the state of a QC is represented by the quantum state of N spin-1/2
systems (qubits), which can be in any linear combination of the 2N basis states, and
operations correspond to unitary transformations on vectors in this 2N -dimensional
Hilbert space. In principle, this feature can be exploited to carry out of the order
of 2N arithmetic operations simultaneously. The potential of QCs to perform this
super-massive, parallel processing has attracted a lot of interest.

In most theortical work the operation of a QC is described in terms of highly
idealized transformations on the qubits 3) - 7). The impact of the physical implemen-
tation of a QC on its computational efficiency is largely unexplored. On a physically
realizable, non-ideal QC, operations that manipulate one particular qubit also af-
fect the state of other qubits. This may cause unwanted deviations from the ideal
motion of the total system and lead to practical problems of programming QCs:

∗) E-mail: deraedt@phys.rug.nl

Administrator
Cross-Out

Administrator
Replacement Text
233 - 242
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An implementation of a quantum computation that works well on one QC may fail
on others. Furthermore, so far, little attention has been paid to the computational
efficiency of the practical (=experimental) procedure to extract the results from the
wave function respresenting the final state of the QC. In this paper we discuss both
aspects taking the point of view that eventually, a QC will be a real physical system.

§2. Physical models for Quantum Computers

Disregarding relativistic effects (a very good approximation for the case at hand),
generic QC hardware can be modeled in terms of quantum spins (qubits) that evolve
in time according to the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
|Φ(t)〉 = H(t)|Φ(t)〉. (1)

In this paper we adopt units such that ~ = 1. In the absence of interactions with
other degrees of freedom (e.g. with the environment) the spin-1/2 system can be
modeled by the time-dependent Hamiltonian

H(t) =−
L∑

j,k=1

∑
α=x,y,z

Jα
j,k(t)S

α
j Sα

k −
L∑

j=1

∑
α=x,y,z

hα
j (t)Sα

j , (2)

where the first sum runs over all pairs of spins (qubits), Sα
j denotes the α-th com-

ponent of the spin-1/2 operator representing the j-th qubit, Jα
j,k(t) determines the

strength of the interaction between the qubits labeled j and k, and hα
j (t) is the ex-

ternal field acting on the j-th spin. The number of qubits is L and the dimension of
the Hilbert space D = 2L. In terms of spin matrices, the operator Qj measuring the
state of qubit j is given by

Qj =
1
2
− Sz

j . (3)

The physical system defined by Eq.(2) includes the simplest (Ising) model of a
universal QC 8), 9) and is sufficiently general to serve as a physical model for a generic
QC at zero temperature without coupling to other degrees of freedom. A QA for QC
model (2) consists of a sequence of elementary operations during which the J ’s and
h’s take prescribed values. In general, given a QA for an ideal QC, it is a non-trivial
problem to express this QA in terms of manipulations of the physical model of the
real QC.

Specific candidate hardware realizations of (2) include NMR systems 10) - 17),
linear arrays of quantum dots 18) or Josephson junctions 19). An approximate model
Hamiltonian for the former reads

H(t) =−
L−1∑
i=1

EiS
z
i Sz

i+1 −
L∑

i=1

hj(t)Sx
j + E0

L∑
i=1

Pj(t)Sz
j , (4)

where Ei = E0 (Ei = 2E0) when i is odd (even) and hi(t) and Pi(t) are external
controls 18).
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Projection of the Josephson-junction model onto a subspace of two states per
qubit yields 20), 21)

H(t) =− 2EL(t)
L−1∑
i=1

Sy
i Sy

i+1 − EJ

L∑
i=1

Sx
j −

L∑
i=1

hj(t)Sz
j , (5)

where the energy of Josephson tunneling is represented by EJ and EL(t) denotes the
energy associated with the inductive coupling between the qubits 20), 21). Here hj(t)
and EL(t) may be controlled externally.

To study the difference between the ideal and physical realization of a QC, we
consider a physical model for NMR-QC experiments 10) - 17), mainly because other
candidate technologies for building QCs are not yet developed to the point that
they can execute computationally non-trivial QAs. For simplicity of presentation we
confine the discussion to 2-qubit QCs. The model Hamiltonian reads

H(t) = −JSz
1Sz

2 − hz(Sz
1 + γSz

2)− h̃x(t)(Sx
1 + γSx

2 )− h̃y(t)(Sy
1 + γSy

2 ), (6)

where γ denotes the ratio of the gyromagnetic factors of spin 2 and spin 1. In NMR
experiments radio frequency fields are used to manupulate individual spins. A simple
choice is to put hα(t) = h̃α sin(fα

j t + ϕα
j ) where the frequency and phase of the field

are denoted by fα
j and ϕα

j respectively. The simple choice for the time dependence of
the pulses is for pedagogical purposes only. In practice, NMR experiments use much
more complicated pulses of electromagnetic radiation 22), 23) but this is not relevant
for the discussion that follows.

The impact of the physical implementation on the performance of a QC is most
easily studied through simulation of model (2) on a conventional computer. At the
time of writing it is a simple matter to simulate systems of 16 qubits on a PC, using
a software emulator for QC hardware 24). In this paper we report simulation results
for the model of the two nuclear spins of the 1H and 13C atoms in a carbon-13 labeled
chloroform, a molecule that has been used in NMR-QC experiments 12), 13). In these
experiments hz/2π ≈ 500MHz, γ ≈ 1/4, and J/2π ≈ −215Hz . In the following we
will use the model parameters 12) for the nuclear spins of this molecule rescaled with
respect to 500Mhz, i.e we put

J = −0.43× 10−6, hz = 1, γ = 1/4. (7)

With this choice of units, time divided by 2π is measured in units of 2 ns.

§3. Quantum Algorithms

One qubit is a two-state quantum system. The two basis states spanning the
Hilbert space are denoted by | ↑〉 ≡ |0〉 and | ↓〉 ≡ |1〉. Rotations of spin j about π/2
around the x and y-axis are basic QC operations. We will denote them by Xj and Yj

respectively, and write Z for the inverse of the operation Z. Clearly these operations
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can be implemented in terms of the time evolution of model (2) by a proper choice
of the model parameters.

Computation necessarily requires some form of communication between the
qubits. A basic two-qubit operation is provided by the CNOT gate. The CNOT
gate flips the second spin if the first spin is in the down state, i.e. the first qubit
acts as a control qubit for the second one. On an ideal QC the CNOT gate can be
expressed in terms of single-qubit operations and a two-qubit phase-shift operation.
There are many different, logically equivalent sequences that implement the CNOT
gate on an NMR QC. Here we limit ourselves to the sequences

CNOT1 = Y1X
′
1Y 1X

′
2Y 2I

′Y2, (8)
CNOT2 = Y1X

′
1X

′
2Y 1Y 2I

′Y2, (9)

where the symbol I ′ represents the time evolution eiτ(JSz
1Sz

2+hzSz
1+γhzSz

2 ) with τ =
−π/J . The single-spin rotations X ′

1, Y ′
1 and X ′

2 are defined by the identities

e−iτ(hz−h)Sz
1 = Y1X

′
1Y 1 = X1Y

′
1X1, (10)

e−iτ(γhz−h)Sz
2 = Y2X

′
2Y 2, (11)

where h = −J/2.
As simple examples of QAs, we consider (QA)1 and (QA)2 defined by

(QA)1|b1b2〉 ≡ (CNOT )5|b1b2〉 , (QA)2|si〉 ≡ Y1(CNOT )5|si〉, (12)

where |b1b2〉 ≡ |b1〉|b2〉, bi = 0, 1, and |si〉 = (|01〉 − |10〉)/
√

2. On an ideal QC,
CNOT 2 is the identity operation and hence (CNOT )5 = CNOT . Furthermore we
have 〈si|(CNOT )5QA1(CNOT )5|si〉 = 1/2. To obtain a clear-cut, zero-one answer
in terms of expectation values of the qubits we apply a π/2 rotation to spin 1:
Y1(CNOT )5|si〉 = |11〉. For this reason the CNOT operations in (QA)2 are followed
by a π/2 rotation of spin 1. Obviously, running (QA)1 and (QA)2 on an ideal QC
yields the correct answer but as we will show below, on a physical QC this is not
always the case.

It is instructive to inquire about the condition to rotate spin 1 about an angle
ϕ1 without affecting the state of spin 2. A general analytical, quantitative analysis
of this many-body problem is rather difficult but we can easily study the limiting
case in which the interaction between the spins has negligible impact on the time
evolution of the spins during application of the SF pulse. This is the case that is
relevant to the model system considered here (since J is very small) and also to
experiments 10) - 13). For simplicity we consider the case of rotating SF fields, e.g.
φx = 0 and φy = π/2. An SF pulse of duration t changes the state of the two-spin
system according to

|Φ(t)〉 = eithz
1(Sz

1+Sz
2 )eith̃x

1Sy
1 eitS2·v|Φ(0)〉, (13)

where v ≡ (0, γh̃x, (γ − 1)hz).
Without loss of generality we will assume that 0 < γ < 1, in concert with the

choice of parameters (7). Then, using representation (13), straightforward algebra
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Table I. Model parameters of single-qubit operations on an NMR QC using rotating SFs for the

case (k = 1, N = 1, M = 4), see Eq.(16). Parameters of model (2) that do not appear in this

table are zero, except for the interaction J = −0.43× 10−6, γ = 1/4, h̃y = h̃x and the constant

magnetic fields hz = 1. The TDSE is solved using a time step δ/2π = 0.01.

τ/2π ω h̃x
1 φx φy

X1 8 1.00 -0.0312500 −π/2 0

X2 128 0.25 -0.0078125 −π/2 0

Y1 8 1.00 0.0312500 0 π/2

Y2 128 0.25 0.0078125 0 π/2

X ′
1 8 1.00 0.0559593 −π/2 0

X ′
2 128 0.25 0.0445131 −π/2 0

Y ′
1 8 1.00 -0.0559593 0 π/2

shows that the condition to rotate spin 1 (2) about an angle ϕ1 (ϕ2) without affecting
the state of spin 2 (1) is given by

(1− γ)2k2
1 +

γ2

4

(
ϕ1

2π

)2

= n2
1 , (1− 1

γ
)2k2

2 +
1

4γ2

(
ϕ2

2π

)2

= n2
2, (14)

where k1, k2, n1, n2 ∈ N. The angles of rotation about the y-axis can be chosen such
that 0 ≤ ϕ1 ≤ 2π and 0 ≤ ϕ2 ≤ 2π. In general, Eqs.(14) have no solution but a
good approximate solution may be obtained if γ is a rational number and k1 and k2

are large. Let γ = N/M (for our choice of parameters, N = 1 and M = 4) where
N and M are integers satisfying 0 < N < M . It follows that the representation
k1 = kMN2 and k2 = kNM2 will generate sufficiently accurate solutions of Eqs.(14)
if the integer k is chosen such that

2kNM(M −N) � 1. (15)

If k satisfies condition (15) a pulse that rotates spin 1 (2) will hardly affect spin 2
(1). In terms of k, N , and M , the relevant physical quantities are then given by

t1h
z

2π
= 2kMN2,

h̃x

hz
=

1
2kMN2

ϕ1

2π
,

t2h
z

2π
= 2kM3,

γh̃x

hz
=

1
2kM3

ϕ2

2π
. (16)

§4. Simulation of Quantum Computer hardware

The model parameters for the rotating SFs are determined according to the
theory outlined above. We use the integer k to compute all free parameters and the
subscript s = 2kMN2 to label the results of the QC calculation. For reference we
present the set of parameters corresponding to k = 1 in Table I. Multiplying s (the
duration of the SF pulse) with the unit of time (2 ns) shows that in our simulations,
single-qubit operations are implemented by using short SF pulses that are, in NMR
terminology, selective and hard.

In Tables II and III we present simulation results for (QA)1 and (QA)2 respec-
tively. The initial states |10〉, |01〉, |11〉 and |si〉 = (|01〉 − |10〉)/

√
2 have been

prepared by starting from the state |00〉 and performing exact rotations of the spins.



6 H. De Raedt et al.

It is clear that even the least accurate implementation (s = 16) of (QA)1 nicely re-
produces the correct answers if the input corresponds to one of the four basis states
but it is also clear that it completely fails if the input state is a singlet state. In the
regime where systematic phase errors are significant the QAs do not always func-
tion correctly. As a further demonstration, we carry out the CNOT operation using
CNOT1 and CNOT2. On an ideal QC both sequences yield identical results but on
a physical system they may produce different results, as exemplified by comparing
Table II (CNOT1) with Table III (CNOT2).

Table II. Expectation values of the two qubits (as and bs) as obtained on a QC that uses rotating

SFs to manipulate individual qubits. The results obtained on an ideal QC are given by a and b.

The time s = τ/2π = 2kMN2 determines the duration and strength of the SF pulses through

relations (16), see Table I for the example of the case s = 8.

Operation a b a16 b16 a32 b32 a64 b64

(CNOT1)
5|00〉 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(CNOT1)
5|10〉 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(CNOT1)
5|01〉 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

(CNOT1)
5|11〉 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Y1(CNOT1)
5|si〉 1.00 1.00 0.03 1.00 0.58 1.00 0.88 1.00

Table III. Same as Table II except that instead of CNOT1 sequence CNOT2 given by (9) was used

to perform the quantum computation.

Operation a b a16 b16 a32 b32 a64 b64

(CNOT2)
5|00〉 0.00 0.00 0.50 0.20 0.07 0.02 0.06 0.02

(CNOT2)
5|10〉 1.00 1.00 0.50 0.80 0.93 0.98 0.95 0.98

(CNOT2)
5|01〉 0.00 1.00 0.51 0.20 0.93 0.98 0.06 0.98

(CNOT2)
5|11〉 1.00 0.00 0.50 0.80 0.07 0.02 0.95 0.02

Y1(CNOT2)
5|si〉 1.00 1.00 0.95 0.98 0.93 0.98 0.99 0.98

Although (QA)1 and (QA)2 are logically identical, the results depend sensitively
on the order in which the single-qubit operations are carried out. In agreement
with the theoretical analysis of Section 3 the results converge to the exact ones for
sufficiently large k, as indicated in Table II. Thus, for sufficiently slow operation this
QC will operate correctly.

The following simple example shows the complications that may arise if more
than 2 qubits are involved. Consider a QA that performs an ideal operation on
the first two qubits while leaving the third and fourth qubits untouched. For
simplicity let us assume that the input state factorizes, i.e. |Φ〉 = |φ(1, 2)〉 ⊗
{a0|00〉 + a1|10〉 + a2|01〉 + a3|11〉}. On the ideal QC the output state is |Φ̃〉 =
|φ̃(1, 2)〉 ⊗ {a0|00〉 + a1|10〉 + a2|01〉 + a3|11〉} but on a physically realizable QC
the operation takes some time τ and hence the output state has the form |Φ̂〉 =
|φ̃(1, 2)〉⊗{a0|00〉+a1e

iτhz
3/2|10〉+a2e

iτhz
4/2|01〉+a3e

iτ(hz
3+hz

4)/2|11〉}, up to an irrel-
evant phase factor. It is clear that unless τhz

3 = 4πn3 and τhz
3 = 4πn4 (n3, n4 ∈ Z),

qubits three and four will acquire a phase and the state |Φ̃〉 no longer corresponds
to the one obtained an ideal QC. The fact that physical qubits evolve in time, i.e.
can never be kept still, leads to considerable complications in the design of a QA
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for a physical QC 25). In essence this design becomes a complicated optimization
problem, as exemplified by the description of NMR-QC experiments 26), 27). In gen-
eral, the solution of this problem may well require computational resources that scale
unfavourably with the number of qubits.

Quantum error correction schemes that work well on an ideal QC require many
extra qubits and many additional operations to detect and correct errors. The sys-
tematic errors discussed above are not included in the current model of quantum error
correction and fault tolerant computing 7). On a physical QC the error-correction
qubits will suffer from the same deficiencies.

§5. Computational efficiency of observing a quantum state

We now assume that the QC is operating like an ideal QC and consider aspects
related to the readout of the result of a quantum computation. Generally in quantum
mechanics, an observation corresponds to a measurement of some physical quantity.
For example, let the state be

|Ψ〉 =
∑

i

ai|φi〉. (17)

If we make a single observation of a quantity A we obtain one of the values

Ai = 〈φi|A|φi〉. (18)

if |φi〉 is an eigenvector of A with eigenvalue {Ai}. After repeated observation, we
can construct a histogram of the frequencies with which the Ai’s occur and estimate
the probability |ai|2 to observe Ai. As a consequence of the observation process,
some information about the state |Ψ〉 is lost: {|ai|2} does not contain all information
about the wave function |Ψ〉. In order to distinguish between different states we have
to observe physical quantities that take different values for each of the states.

Let us consider a system that consists of S=1/2 spins representing the qubits of
the QC. We take for the basis states {|φi〉} the eigenstates of the z components of
the Pauli-spin matrices, |φi〉 = |σi

1, σ
i
2, · · · , σi

N 〉, where σi
k = ±1, k = 1, · · · , N , and

N is the number of qubits. The most simple quantity that uniquely identifies a basis
state is the set of numbers {σi

1, σ
i
2, · · · , σi

N}.

5.1. Observation of a basis state: Grover’s database search algorithm

In Grover’s algorithm 2) the final state of the quantum computation is one of the
basis states, e.g.,

|Ψ〉 = |+−+ + · · ·+〉, (19)

where the ”−” representes the position of the item that was to be searched for. In
this case, we can first observe spin 1. This gives 〈σ1〉 ≡ 〈Ψ |σ1|Ψ〉 = 1. We then repeat
the calculation ( = experiment), yielding the same |Ψ〉, and measure 〈σ2〉 = −1, and
so on. After measuring the N different spins we find the set {〈σ1〉, 〈σ2〉, · · · , 〈σN 〉}.
In this case there is no problem of observation: We can identify the final state of the
QC with O(N) measurements, hence the observation process is efficient.
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5.2. Observation of a linear combination of basis states: Shor’s algorithm

In Shor’s algorithm 1), 6), the final state of the QC is given by a linear combination
of the basis states, see Eq.(17). To complete the factorization, we have to identify
the final state of the QC. If we simply measure σ1, we obtain +1 or −1 and the same
for the other spins. Accumulating such observations only gives 〈Ψ |σi|Ψ〉 but little
information on which basis state the QC is in, nor about the distribution of the ai’s.
In order to identify the basis states that contribute to the final state of the QC, we
have to observe the values of spins (σi

1, σ
i
2, · · · , σi

N ) simultaneously. This can be done
by decomposing the state |Ψ〉 into N orthogonal projections. Conceptually this can
be done by a collection of 2N Stern-Gerlach beam splitters. Each time a particle
enters the device from the left, only one of the detectors on the right will report the
arrival of the particle and at the same time identify the basis state. The detector for
the basis state |σi

1, σ
i
2, · · · , σi

N 〉 will give a signal with probability {|ai|2}.
This procedure seems simple but in practice, in order to detect and identify a

basis state, we have to provide 2N detectors and the potential efficiency of quantum
computation is completely lost. Indeed, if we want to factor a large number L and are
allowed to use L machines, we let the k-th machine divide L by k and test whether
the remainder is zero or not. In this way we can easily find the factors of L in one
step but clearly we do not consider this a solution of the factorization problem. If
we need O(L) detectors to process the result of Shor’s algorithm, there is no point
in using a QC.

We should also consider the case where we measure a single physical quantity
that provides detailed information about a final state of the QC. For example, the
magnetization

M =
N∑

n=1

σn, (20)

can be measured without observing individual spins. The discrete values of M can
be resolved experimentally. Note however that the values of M change from −N to
N and the range of M values is only O(N).

In the case of Shor’s algorithm, we may consider an operator that directly cor-
responds to the number of each basis state:

X =
N∑

n=1

2n−1(σn − 1). (21)

This operator is diagonal in the representation that we use for the basis states |φi〉.
If we observe X we obtain

Xi = 〈φi|X|φi〉 (22)

with the probability |ai|2. Thus, we can uniquely identify the final state of one
calculation or, by repeated observation, obtain the distribution of the ai’s.

At first sight using X instead of individual spins seems to solve the detection
problem but that is not the case. In contrast to the measurement of the magneti-
zation, the range of X is O(2N ) and we have to determine all digits of X, which is
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essentially the same as using 2N detectors. This requires measurements with a preci-
sion that increases like 2N and the problem still remains. However, in the case of the
number factoring problem where N is a product of two primes, a rough estimate of
the value of X may already give a boost in efficiency (compared to a random choice)
of searching for candidate factors of N so there may be situations in which the whole
procedure may work. Note that in the case of Grover’s algorithm it is sufficient to
have N instead of 2N detectors because we know that the results of the calculation
are single basis states, not a linear combination.

As another manifestation of the inefficient observation we consider a QA to
solve the Number Partitioning Problem, described elsewhere 28). This QA returns as
a result a linear combination of basis states but the relevant information is contained
only in the coefficient a0 of the basis state with zero energy. The partitioning problem
has a soloution if a0 is nonzero, while there is no solution if a0 = 0. In this case
we do not need N detectors. One detector for the state |φ0〉 will do. But there is
another problem. Effectively this QA computes the ratio of the number of solutions
of the partitioning problem to the total number of partitionings (which is O(2N−1)).
When the number of solutions of partitions is small, e.g. zero or one, and the
total number of partitionings is large, |a0|2 = O(2−N ) which may be too small to
be observable in practice. Essentially the problem of observation boils down to a
problem of insufficient precision, as in the case of Shor’s algorithm.

The observation problem sketched above is generic rather than an exception if
the result of the quantum computation is a linear combination of the basis states
and the coefficients carry information (we exclude the trivial case of a uniform prob-
ability distribution). One way to alleviate this problem is to increase the number of
functional units. This is the approach taken in NMR QC experiments where a very
large number (orders of magnitude larger than the number of different basis states
of the QC) of molecules contribute to the observed signal 26), 27). Obviously, in terms
of quantum processors, the computational efficiency of this approach is fairly low.
If we have additional information about the way the basis states contribute to the
linear superposition we may be able to indentify the relevant basis states by measur-
ing the expectation values of the individual spins 26), 27). However, in this case, the
assessment of the efficiency of the QA should take into account the cost of obtaining
this information, in particular scaling of this cost with the problem size.

§6. Summary

For each realization of QC hardware, there is a one-to-one correspondence be-
tween the QA and the unitary matrix that transforms the state of the quantum
system. A QA will operate correctly under all circumstances if the whole unitary
matrix representing the QA is a good approximation to the ideal one. In other
words, the magnitude and the phase of all matrix elements should be close to their
ideal values. For n qubits there are 2n(2n− 1) real numbers that specify the unitary
matrix corresponding to a QA. All these numbers should be close to their ideal val-
ues, otherwise the QA is bound to produce wrong answers. These constraints put
considerable demands on technologies to fabricate QCs.
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We argued that estimating the efficiency of a quantum computation is more
than counting the operations in a quantum algorithm. The cost of quantum state
identification, an essential part of potentially powerful QAs, has to be taken into
account. It remains a great challenge to show that the theoretical efficiency of a QC
can be turned into practically useful computing power.
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