
Journal of Magnetism and Magnetic Materials 246 (2002) 392–398

Many-spin effects and tunneling splittings in Mn12
magnetic molecules

H.A. De Raedta, A.H. Hamsa, V.V. Dobrovitskib,*, M. Al-Saqerb,
M.I. Katsnelsonb, B.N. Harmonb

a Institute for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4,

NL-9747 AG Groningen, Netherlands
bAmes Laboratory, A. 101 Physics, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

Received 15 August 2001; received in revised form 4 December 2001

Abstract

We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin

structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the

number of excitations taken into account) may lead to significant error (orders of magnitude) in the resulting tunneling

splittings for the lowest energy levels, so that an intuitive picture of different decoupled energy scales does not hold in

this case. Possible routes for further development of the many-spin model of Mn12 are discussed. r 2002 Elsevier

Science B.V. All rights reserved.

PACS: 75.40.Mg; 75.50.Xx; 75.10.Dg; 75.45.+j
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1. Introduction

Molecular magnets [1] have proven to be very
suitable systems for the study of mesoscopic
tunneling effects in magnetic materials. A number
of impressive experimental results have been
obtained recently, such as thermally assisted
tunneling [2,3], ground state-to-ground state tun-
neling [4,6] and topological phase effects in spin
tunneling [4]. Among others, the molecular magnet

Mn12O12ðCH3COOÞ16ðH2OÞ4 (herein referred to as
Mn12) has received special attention. The effect of
resonant magnetization tunneling has been first
observed and studied in detailed experiments [2,3]
on Mn12; and, at present, a substantial amount of
reliable experimental data has been collected.
Quantitative analysis of these experiments is a
challenging theoretical problem involving funda-
mental issues about tunneling phenomena in
mesoscopic magnetic systems. The basic prerequi-
site for solving this problem is our ability to
evaluate accurately and reliably the energy
splittings occurring as a result of tunneling
between two (quasi) degenerate levels [7]. At
present, carefully designed magnetic relaxation
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experiments at low and ultralow temperatures
(tens or hundreds of millikelvin) can detect [2,3]
the changes in relaxation time caused by the
splittings of order 10�2–10�4 K; and even smaller
[4], of order 10�6–10�7 K: The relaxation time data
obtained in these experiments give information
(although indirect) about the splitting values, so
that predictions of the theoretical models can be
compared with experimental results.
Conventionally, the molecular magnet Mn12 is

considered as a large single spin S ¼ 10 with
quasidegenerate levels Sz ¼ þM and �M split
because of tunneling. However, the single-spin
Hamiltonian is a phenomenological construct; in
reality, this is a many-spin system, consisting of 12
manganese ions coupled by exchange interactions.
Here, using Mn12 as a well-studied example, we
address the problem of reliable many-spin calcula-
tion of the tunneling splittings in molecular
magnets. Such a calculation is a very complicated
task. For example, the Hilbert space of the spin
Hamiltonian describing a molecule of Mn12
consists of 108 levels, while the smallest tunneling
splittings in Mn12 are of order of 10

�10 K (as
measured in Ref. [5] for m ¼ 710). The brute-
force direct calculation of tiny tunneling splittings
in this system, even for several low-lying states, is
beyond the capabilities of modern computers. The
general strategy to solve this problem is to truncate
the full Hilbert space thus reducing consideration
to a much smaller number of relevant energy
levels. This idea, implemented in a rather sophis-
ticated way, forms a basis of several approaches
for the evaluation of tunneling phenomena, such
as quantum Monte Carlo methods [9], stochastic
diagonalization [10], and instanton calculations
[8].
To our knowledge, all calculations of the

tunneling splittings in molecular magnets starting
from realistic Hamiltonians have employed trun-
cation of the Hilbert space in a much more
straightforward, and much less justified manner.
High-energy basis states, assumed to be irrelevant,
are being explicitly excluded from consideration,
and only the low-energy part of the spectrum is
being taken into account [11]. In the present paper,
we calculate tunneling splittings using the many-
spin model of Mn12; examining the accuracy and

reliability of this straightforward scheme. We
demonstrate that, because of strong Dzyaloshins-
ky–Morya (DM) interactions present in Mn12; the
splitting values obtained in this way are unreliable.
We also consider the sensitivity of the calculated
splitting values to variation in the Hamiltonian
parameters, and determine the accuracy needed for
reliable splittings calculation.
The paper is organized as follows. In Section 2,

we discuss the 8-spin model of Mn12 and the
methods used to calculate tunneling splittings
based on this model. We also consider the
stability of the results with respect to possible
limitations of the model Hamiltonians. In Section
3 we consider the reasons for the failure of the
energy-based truncation scheme in the splittings
calculations. Our conclusions can be found in the
Summary.

2. 8-Spin model of Mn12 and calculations of the

tunneling splittings

The cluster Mn12 consists of eight Mn
3þ ions

having spin 2 and four Mn4þ ions having spin 3
2
;

coupled by exchange interactions. The total
number of spin states in Mn12 is 10

8; and a
corresponding Hamiltonian matrix is rather large
to be treated by modern computers. To overcome
this difficulty, we can employ the natural hierarchy
of interactions present in Mn12: The antiferromag-
netic exchange interactions J1C220 K between
Mn3þ and Mn4þ ions are significantly stronger
than all the others [12], so corresponding pairs of
Mn3þ and Mn4þ ions can be considered as stiff
dimers with the total spin s ¼ 1

2
; thus giving rise to

the 8-spin model of Mn12: The range of validity of
the 8-spin model, and the corresponding 8-spin
Hamiltonian of Mn12 have been considered in Ref.
[14]. After examination of different possible
interactions, the following Hamiltonian has been
proposed:

H ¼ � J
X

i

si

 !2
�J 0

X
/k;lS

skSl � Kz

X4
i¼1

Sz
i

� �2
þ
X
/i;jS

Di;j½si � Sj	: ð1Þ
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Here, Si and si are the spin operators for the large
spins S ¼ 2 and small dimer spins s ¼ 1

2
; corre-

spondingly (the subscript i indexes the spins). The
first two terms describe isotropic Heisenberg
exchange between the spins. The third term
describes the single-ion easy-axis anisotropy of
large spins. The fourth term represents the
antisymmetric DM interactions in Mn12; where
Di;j is the DM vector describing the DM-interac-
tion between ith small spin and jth large spin.
Existence of DM-interactions in Mn12 has been
suggested in Ref. [13], and their magnitude has
been estimated in Ref. [14] based on the neutron
scattering data [15]. The molecules of Mn12 possess
a fourfold rotational-reflection axis (symmetry S4)
imposing restrictions on the DM-vectors Di;j ; so
that DM interactions can be described by only
three parameters Dx 
 D1;8x ; Dy 
 D1;8y ; and Dz 

D1;8z :
It has been demonstrated [14] that the above

model satisfactorily describes a rather wide range
of experimental data, such as the splitting of the
neutron scattering peaks, results of EPR measure-
ments and the temperature dependence of mag-
netic susceptibility. Here, for calculations we use
the parameter set A from Ref. [14]:

Set A : J ¼ 0; J 0 ¼ 105 K; Kz ¼ 5:69 K;

Dx ¼ 25 K; Dy ¼ 0; Dz ¼ �1:2 K: ð2Þ

which also gives a good description of the response
of Mn12 molecules to a transverse magnetic field
(external field applied perpendicular to the easy
axis of the molecule). However, this set of
parameters should not be considered as being
accurately determined, since the amount of the
experimental information available is not yet
sufficient to achieve particularly reliable para-
meters. In Hamiltonian (1), only the fourth term,
representing the DM interactions, can lead to
tunneling:1 the first three terms conserve the z-

projection of the total spin Sz and cannot induce
tunneling between levels with different Sz; while
the DM-term mixes levels with different Sz: In
what follows, we will label the energy levels by the
value of Sz: Although it is not an exact quantum
number, we can formally consider the DM-
interaction as a perturbation, and use perturbation
theory terminology.
The following values of the tunneling splittings

corresponding to the parameter set (2) have been
obtained by the diagonalization of the full
Hamiltonian matrix (of the size 104 � 104) using
quadruple precision arithmetics:

DEð710Þ ¼ 1:18� 10�15 K;

DEð78Þ ¼ 1:06� 10�11 K;

DEð76Þ ¼ 3:87� 10�8 K;

DEð74Þ ¼ 2:08� 10�6 K;

DEð72Þ ¼ 4:17� 10�2 K: ð3Þ

The splittings for odd values of Sz are not shown:
they constantly remain at the level of the
numerical precision of the calculations (of order
of 10�19 K) [16]. In Mn12; these splittings should be
zero since the fourfold symmetry of the molecule
imposes certain restrictions on the symmetry of the
spin Hamiltonian and makes some matrix ele-
ments vanish. In the single-spin model of Mn12 this
property of the spin Hamiltonian is introduced
explicitly, by retaining only those operators which
possess the required fourfold symmetry. In the
many-spin simulations, we obtain the same result
independently.
The first question to pose concerns the accuracy

of the level splitting evaluation. Parameters of the
Hamiltonian are determined with some finite
precision, and a small error (say, of the order of
several kelvin) affects the level energy by an
amount of order of kelvin, which is much larger
than the very small value of tunneling splitting (of
order of 10�12 K). Does it deprive the calculational
results of all meaning? To answer this question, we

1Note that Dzyaloshinsky-Morya interactions have nonzero

matrix elements only for the pairs of levels jS;SzS and

jS71;Sz71S; but they do not couple the levels with the same
value of the total spin S: It means that the tunneling splittings
are governed by the ratio Dx;y;z=J 0; i.e. the tunneling barrier is
created primarily by the exchange. This is in contrast with the

single-spin model picture, where the tunneling appears due to

the anisotropy termS4
þ þS4

�; so that the ratio g=a determines

(footnote continued)

the splittings, and the tunneling barrier coincides with the

anisotropy barrier.
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note that the levels jSz ¼ þMS and jSz ¼ �MS
are degenerate due to exact symmetry properties of
the spin Hamiltonian, and, in the absence of the
DM-term, would be degenerate at any value of
parameters. Therefore, the tunneling splittings
DEþM;�M are governed only by the strength of
the interaction which breaks the symmetry, i.e. the
DM-interaction. If the parameters of the Hamil-
tonian are determined with reasonably small
relative error, and if the numerical calculation is
done with sufficient precision, then the relative

error of the level splittings will also be small. This
conclusion is supported by our calculations: a 10%
variation in the Hamiltonian parameters leads to
the variation in the splitting values at most by a
factor of ten, so that accurate determination of the
Hamiltonian parameters is necessary for reliable
calculation of the tunneling splittings. If only a
logarithmic accuracy in the splitting values is
needed, then the 10% uncertainty in the Hamilto-
nian parameters is sufficient.
However, there is another, much more impor-

tant source of possible error. The description of
the Mn12 molecule by the 8-spin model requires a
full, high-precision diagonalization of the Hamil-
tonian matrix with dimensions 104 � 104: Solving
this problem is rather time-consuming. Matrices of
that size can be processed very effectively using
Lanczos-type methods, but the application of
these methods to the tunneling splitting calcula-
tions constitutes quite a difficult problem by itself.
A very large number of iterations is needed to
achieve the necessary precision and in addition the
precision is hard to control when the level
separation is very small, so that special techniques
are necessary.
Therefore, it is natural first to explore another

approach, namely, to omit high-energy basis
states, retaining only the low-lying part of the
spectrum where basis levels have energies less than
some threshold value Ecut: This approach has been
adopted extensively and in fact, we are not aware
of any calculations of tunnel splitting of magnetic
molecules done in a different way: calculations
based on both the single- and many-spin model
[11] have employed this method. In this paper, we
assess the validity of this energy-based truncation
approach by considering the dependence of the

tunneling splittings DEþM ;�M for different pairs of
degenerate levels jSz ¼ þMS and �MS on the
number of lowest levels Nlow actually used in
calculations (or, in other words, their dependence
on the energy threshold Ecut).
A brief description of the basis states is in order.

We first consider the first two exchange terms in
the Hamiltonian of Eq. (1) and diagonalize within
the manifold of all the 8-spin configurations
yielding states with Sz ¼ 0; there are 1286 energy
eigenvalues corresponding to eigenvectors with S
ranging from 0 to 10. The distribution of states is:
(10,1), (9,7), (8,24), (7,56), (6,104), (5,164), (4,220),
(3,248), (2,232), (1,168), (0,62), where the first
number in parenthesis is the value of S and the
second is the number of levels with this value ofS:
With the 2Sþ 1 degeneracies included, there are
exactly 10 000 states. These are the basis states
which are then used to diagonalize the full
Hamiltonian, including anisotropy and DM terms.
The initial increase in the number of basis states

considered, Nlow; leads to an overall increase in
DEþM ;�M accompanied by oscillations (see Fig. 1).
After Nlow achieves the value of about 700, the
oscillations have become small and DEþM;�M

versus Nlow exhibits a plateau. This saturation
lead in Ref. [11] to the conclusion that the resulting
values give the actual splittings with sufficient
accuracy. But this conclusion is wrong. A further
increase of the number of levels leads to a
resurrection of the oscillations at NlowB1200; with
a quite pronounced jump in DEþM;�M for
NlowB1700: For a larger number of levels, the
situation repeats itself: the values of the splittings
reach another plateau, then oscillations appear
again with a subsequent jump, etc. We have traced
this behavior up to NlowB3000; which is already 13
of the total number of levels. The observed
behavior of DEþM ;�M is, in our opinion, a very
clear signal that energy-based truncation of the
Hilbert space is not a good strategy for the
computation of tunneling splittings: it gives
unreliable results.
The rather sharp jumps in the tunneling split-

tings as discussed above and illustrated in Fig. 1
are associated with the inclusion of basis states
with large S values. Because of the selection rule
for the DM term (S-S71), the S ¼ 10 ground
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state only couples with S ¼ 9 states. States with
smaller S values affect the splittings more
indirectly by coupling with other states which
eventually couple to the ground state. While the
states with large S cause jumps in the splitting
values, there are few of them, and the smaller
coupling of smaller S states still is significant
because of the cumulative effect of so many states
(see the distribution given above). Therefore, the
evaluation of tunneling splittings for a general
system possessing strong DM interactions requires
consideration of sufficiently large portion of
Hilbert space.
It is noteworthy that the same truncation

method works rather well for calculations of the
energies of well-separated levels. To compare the
model against most of the experiments, it suffices

to know the positions of the levels with much less
precision, usually an error o0:1 K is already
adequate. This level of precision can be obtained
by taking into account NlowB1000 levels (i.e. 110 of
the total Hilbert space). Even using NlowB500; the
error in the level position is o1 K even for the
states of energy about 60K. Therefore, the matrix-
truncation approach is adequate for fitting the
model parameters to experimental data. But the
calculations of the tunneling splittings should be
done using the full Hamiltonian matrix.

3. Discussion

We have shown that truncating the Hilbert
space leads to large errors in the calculated values
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Fig. 1. Dependence of the tunneling splittings DEþM ;�M (in kelvin) versus the number of levels taken into account in the many-spin

calculations. The parameter set A (see text) has been used for calculations. The results forM ¼ 8; 6, 4, and 2 are presented. Tunneling
splittings for the levels with odd M are zero because of the symmetry properties of the spin Hamiltonian.
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of tunneling splittings. But actually, any sensible
Hamiltonian is inevitably obtained due to some
truncation of the Hilbert space. For example,
Hamiltonian (1) can be considered as a result of
the two-step procedure [17,19]: (i) projection of the
real many-electron Hamiltonian onto the subspace
of suitably chosen single-electron orbital states,
yielding a general spin Hamiltonian of the
molecule and (ii) projection of the resulting spin
Hamiltonian onto the subspace of the 8-spin
model. This procedure is usually justified (at least,
at the heuristic level) by invoking some kind of
perturbation or WKB-theory arguments, and
corresponds to an intuitive idea of different,
practically independent energy scales.
However, in the case of the tunneling splittings,

we see that very different energy scales signifi-
cantly affect each other. Why do the same
arguments not work if we truncate the 8-spin
Hamiltonian? In our opinion, this takes place
because the conditions of the applicability of
WKB-reasoning (or similar arguments based on
perturbation theory) are not satisfied. The spin of
the system S ¼ 10 is too small, so that the
instanton action [7] on the trajectories correspond-
ing to the 8-spin model is not large enough.
Indeed, for systems with well-separated levels, the
quasiclassical approximation usually already
works reasonably for a total spin SB2–3. How-
ever, as has been demonstrated [18], to apply the
same type of arguments to the splitting calcula-
tions, the (normalized) instanton action SI should
exceed the value of 12. For the model employed in
Ref. [18], this corresponds to the system with a
total spin (more exactly, with the total antiferro-
magnetic vector) of order of several thousand.
Thus, the tunneling splittings, in general, appear to
be much more sensitive to the method of calcula-
tion than the level energies themselves, and
conditions for applicability of the conventional
WKB-reasoning are considerably more stringent
(though for Mn12 they can of course be different
from the condition SI > 12). Qualitatively, this
agrees with our observations (see Section 2). Even
a rather severe truncation of the Hilbert space has
a minor effect on the level energies, while correct
values of the tunneling splittings require a
diagonalization of the full Hamiltonian.

Briefly, these arguments can be expressed in a
rather obvious form: the 8-spin model is not
‘‘macroscopic enough’’ to justify the truncation of
the Hilbert space by some WKB or similar
perturbation approach. In this case the intuitive
picture of different independent energy scales is
misleading.
This conclusion raises important questions,

namely, is the 8-spin model, being the result of
the truncation of, e.g., 12-spin Hamiltonian,
sufficient to predict reliably the tunneling splittings
(or, in other words, is the 12-spin model ‘‘macro-
scopic enough’’ to be truncated)? What is the
minimal model allowing the splittings to be
calculated correctly? We believe that these are
key questions, not only for Mn12 but for the whole
class of magnetic molecules. For this purpose, ab
initio calculations of the exchange and anisotropic
intramolecular interactions in Mn12 could be very
useful. Also, reliable experimental data for the
tunneling splittings would obviously be of great
value for further development.

4. Summary

We have calculated the tunneling splittings in
Mn12 on the basis of the 8-spin model proposed
earlier [14]. We have shown that rather accurate
knowledge of the Hamiltonian parameters is
needed for the accurate splitting calculations;
although, for logarithmic accuracy, 10% error in
the parameters can be tolerated. Furthermore, we
have demonstrated that a reliable calculation of
the tunneling splittings for a system with strong
DM interactions requires the use of the full
Hamiltonian matrix. We have explicitly shown
that an energy-based Hilbert space truncation
scheme can be successfully used for the determina-
tion of the level energies, but leads to erroneous
results when applied to the splitting calculations.
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