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Summary. In various basic experiments in quantum physics, observations are
recorded event-by-event. The final outcome of such experiments can be computed
according to the rules of quantum theory but quantum theory does not describe sin-
gle events. In this paper, we describe a stimulation approach that does not rely on
concepts of quantum theory but nevertheless generates events with frequencies that
agree with quantum theory. In particular, we demonstrate that locally connected
networks of processing units that have primitive learning capabilities can be used
to perform a deterministic, event-based simulation of single-photon Mach-Zehnder
interferometer experiments.

1.1 Introduction

Recent advances in nanotechnology, make it possible to control individual
ions, atoms, photons and the like. These technological developments facilitate
the study of single quantum systems at the level of individual events [1, 2].
Such experiments address the most fundamental aspects of quantum theory.
Quantum theory gives a recipe to compute the frequencies for observing events
but it does not describe individual events, such as the arrival of a single
electron at a particular position on the detection screen [2–5]. Reconciling the
mathematical formalism, not describing single events, with the experimental
fact that each observation yields a definite outcome is often referred to as the
quantum measurement paradox [3, 4].

Computer simulation is a powerful methodology, complementary to theory
and experiment, to model physical phenomena [6]. In this approach, we start
from the basic equations of physics and use numerical algorithms to solve
these equations. But what if the basic equation to describe the individual
events is unknown?

From a computational viewpoint, quantum theory provides a set of rules to
compute probability distributions [3,7], that is to compute the final, collective
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outcome of an experiment in which single events are recorded. However, quan-
tum theory does not provide algorithms to perform an event-based simulation
of such experiments. Methods based on the solution of the (time-dependent)
Schrödinger equation are inappropriate for this purpose. Hence, a completely
new computer simulation method is required to simulate the event-based ob-
servations in quantum physics experiments.

Elsewhere, we have already demonstrated that locally-connected networks
of processing units with a primitive learning capability can generate events at
a rate that agrees with the quantum mechanical probability distribution [8–
11]. In this paper we discuss the basic elements of our approach and, as an
illustration, we present deterministic event-based simulation results of single-
photon Mach-Zehnder interferometer experiments.

1.2 Deterministic learning machines (DLMs)

In quantum physics, an event corresponds to the detection of a photon, elec-
tron or the like. In our deterministic, event-based simulation approach an
event is the arrival of a message at the input port of a processing unit.
This processing unit typically contains three components: an input DLM,
a transformation unit and an output DLM. A DLM is a classical (but non-
Hamiltonian), deterministic, local and causal dynamical system with a primi-
tive learning capability. A DLM consists of input and output ports, an internal
unit vector, a rule that specifies how this vector changes when an input event
is received, and a rule by which the DLM determines the type of output event
it generates as a response to the input event.

For simplicity, we assume that the input DLM can accept L = 2 types of
events, but only one at a time. We label the events by 0 and 1. Event 0 carries
a message represented by a unit vector y0 = (y0, y1) containing two real
numbers. Similarly, event 1 carries a message represented by y1 = (y2, y3).
In this particular case the internal vectors of the input and output DLM
have length four and can be represented by x = (x0, x1, x2, x3), where xi,
i = 0, . . . , 3 are real numbers. In general the length of the internal vector is
2× 2L. The initial value of the internal vector is irrelevant and can be chosen
at random.

The learning algorithm of the input DLM, DLMi, is defined as follows:

• DLMi constructs a vector x̂ of length four using information from the
incoming event and from its own internal vector x. If the DLM re-
ceives a 0 event then x̂ = (y0, y1, x2, x3). If it receives a 1 event then
x̂ = (x0, x1, y2, y3).

• Based on its own internal vector DLMi computes eight candidate internal
vectors containing the elements

wj,j = ±
√
1 + α2(x2

j − 1), wj,i = αxi, if i �= j, (1.1)
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where i, j = 0, . . . , 3 and i is the first running index. The parameter 0 <
α < 1 controls the learning process.

• DLMi chooses from the eight candidate internal vectors w the one that
minimizes the cost function C = −w.x̂ and replaces its internal vector x
by this vector.

• DLMi puts the four elements of its internal vector on its four output ports
and waits for the next event to be processed.

• The four output ports of DLMi are connected to the four input ports of
the transformation unit. The transformation unit applies an orthogonal
transformation to the vector x = (x0, x1, x2, x3) it receives from DLMi.
The precise form of the transformation depends on the particular function
that the processor has to perform. An example is given in section 1.4. The
result of the transformation is the vector x′ = (x′

0, x
′
1, x

′
2, x

′
3).

The learning algorithm of the output DLM, DLMo, is defined as follows:

• DLMo takes the vector x′ = (x′
0, x

′
1, x

′
2, x

′
3) as input.

• Just as DLMi, DLMo computes, based on its internal vector eight, candi-
date internal vectors according to Eq.(1.1).

• DLMo chooses from the eight candidate internal vectors w the one that
minimizes the cost function C = −w.x′ and replaces its internal vector x
by this vector.

• DLMo generates an output event of type 0 (1) carrying as a message the
first (last) two elements of its new internal vector, if an update rule with
j = 0, 1 (j = 2, 3) was chosen.

• DLMo waits for the next event to be processed.

1.3 A DLM is an efficient encoder

We consider as a special case of the DLM described in section 1.2 a DLM which
accepts one input event carrying the message y = (cosφ, sinφ). In this case,
the internal vector x of the DLM has length two and there are four candidate
update internal vectors, given by Eq.(1.1) with i, j = 0, 1. The DLM chooses
from the four candidate internal vectors w the one that minimizes the cost
function C = −w.y and replaces its internal vector x by this vector. The
DLM sends out a 0 (1) event carrying as a message the first (second) element
of its new internal vector if an update rule with j = 0 (j = 1) was chosen. If
we count the number of 1 events sent out by the DLM, which we denote by K,
and divide by the total number of processed events N , we find K/N ≈ cos2 φ.
The DLM generates a fully deterministic sequence of zeroes and ones, that
is, the most compact sequence for each K and N , with minimum variance
on K/N ≈ cos2 φ. The performance is optimal: the number of distinguishable
messages is equal to N + 1.

Apparently, the most efficient deterministic encoder (encoding an angle φ
as a sequence of zeroes and ones) that we can build generates data according
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Fig. 1.1. Left: Screen dump of an interactive program that performs event-based
simulations of a single-photon Mach-Zehnder interferometer [12]. The number of
events Ni in channel i = 0, . . . , 3 corresponds to the probability for finding a pho-
ton on the corresponding arm of the interferometer. Right: Simulation results for
the DLM-network shown on the left. Input channel 0 receives (cosψ0, sinψ0) with
probability one. A uniform random number in the range [0, 360] is used to choose
the angle ψ0. Input channel 1 receives no events. Each data point represents 10000
events (N0 + N1 = N2 + N3 = 10000). Initially the rotation angle φ0 = 0 and after
each set of 10000 events, φ0 is increased by 10◦. Markers give the simulation results
for the normalized intensities as a function of φ0. Open squares: N0/(N0+N1); Solid
squares: N2/(N2+N3) for φ1 = 0; Open circles: N2/(N2+N3) for φ1 = 30◦; Bullets:
N2/(N2 + N3) for φ1 = 240◦; Asterisks: N3/(N2 + N3) for φ1 = 0; Solid triangles:
N3/(N2 + N3) for φ1 = 300◦. Lines represent the results of quantum theory.

to Malus’s law: I = I0 cos2 φ, where φ is the angle between the polarization
direction of the light and the transmission axis of the polarizer. Note that we
designed the encoder by making use of geometric rules and not by using laws
of physics. The cos2 φ law is the result of finding the optimal encoder.

1.4 Single-photon Mach-Zehnder interferometer

We consider a DLM network (see Fig. 1.1) that generates the same interfer-
ence patterns as those observed in single-photon Mach-Zehnder interferome-
ters [1]. There is a one-to-one correspondence between the processing units
in the network and the physical parts of the experimental setup. For the
beam splitters we use a network consisting of an input and output DLM
as described in section 1.2. To implement the operation of a beam split-
ter, we use in the transformation unit the transformation (x0, x1, x2, x3) →
1/
√
2(x0 − x3, x2 + x1, x2 − x1, x0 + x3). The phase shift is taken care of by

two passive devices that perform plane rotations by φ0 and φ1, respectively.
According to quantum theory, in the case that input channel 1 receives no
input events, the amplitudes (b0, b1) of the photons in the output channels N2

and N3 of the Mach-Zehnder interferometer are given by
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b0 = eiγ sin((φ0 − φ1)/2) , b1 = eiγ cos((φ0 − φ1)/2), (1.2)

where γ is an irrelevant phase. From Eq.(1.2), it follows that the probabilities
|b0|2 and |b1|2 depend on φ = φ0−φ1 only. In Fig. 1.1 we present a representa-
tive selection of simulation results for the Mach-Zehnder interferometer built
from DLMs. It is clear that our event-by-event simulation approach generates
events according to the wave mechanical distribution Eq.(1.2).

1.5 Discussion

We have described the basic elements of a procedure to construct algo-
rithms that can be used to simulate quantum processes without solving the
Schrödinger equation. We have shown that single-particle quantum interfer-
ence can be simulated on an event-by-event basis using local and causal pro-
cesses, without using concepts such as wave fields or particle-wave duality.
Elsewhere, we show that the same procedure can be used to perform a deter-
ministic, event-based simulation of universal quantum computation [11, 13].
These results suggest that we may have discovered algorithms that do not rely
on concepts of quantum theory, but are able to simulate quantum phenomena
using classical, causal, local, and event-based processes
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