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The dynamics of magnetization and energy densities are studied in the two-leg spin-1/2 ladder. Using
an efficient pure-state approach based on the concept of typicality, we calculate spatiotemporal correlation
functions for large systems with up to 40 lattice sites. In addition, two subsequent Fourier transforms from
real to momentum space as well as from the time to frequency domain yield the respective dynamical structure
factors. Summarizing our main results, we unveil the existence of genuine diffusion for both spin and energy. In
particular, this finding is based on four distinct signatures which can all be equally well detected: (i) Gaussian
density profiles, (ii) time-independent diffusion coefficients, (iii) exponentially decaying density modes, and (iv)
Lorentzian line shapes of the dynamical structure factor. The combination of (i)–(iv) provides a comprehensive
picture of high-temperature dynamics in this archetypal nonintegrable quantum model.
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I. INTRODUCTION

The study of low-dimensional spin systems is one of the
most active fields in condensed-matter physics. On the one
hand, quantum spin models are of immediate relevance to
describe the properties of various Mott insulators, where
(quasi-)one-dimensional structures like chains or ladders are
realized within the bulk materials. The notion of property
can be manifold in this context, including thermodynamic
quantities [1], transport characteristics such as the heat con-
ductivity [2,3], and other dynamic features probed by, e.g.,
neutron scattering [4,5], nuclear magnetic resonance [6], and
muon spin resonance [7], to name just a few. Particularly,
developing a thorough understanding of quantum magnets,
both experimentally and theoretically, is also of essential
importance in order to pave the way for potential spin-based
technologies in the future [8].

On the other hand, from a more fundamental point of view,
low-dimensional spin models represent prototypical examples
of interacting quantum many-body systems, allowing us to
study questions ranging from the foundations of statistical
mechanics [9] to the physics of black holes [10]. In particular,
long-standing questions concerning the emergence of thermo-
dynamic behavior in isolated quantum systems have recently
experienced rejuvenated attention [11–14]. This upsurge of
interest is due to not least the advance of controlled experi-
ments with cold atoms and trapped ions [15–17], theoretical
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key concepts such as the eigenstate thermalization hypothesis
[18–21] and the typicality of pure quantum states [22–25], and
the development of powerful numerical techniques [26].

Concerning the relaxation in isolated quantum systems,
an intriguing question is the difference in the properties be-
tween integrable and nonintegrable systems. On the one hand,
integrable systems exhibit a macroscopic set of (quasi)local
conservation laws [27,28] which might cause anomalous ther-
malization [29] as well as nondecaying currents, i.e., ballistic
transport [30]. Nonetheless, even for paradigmatic integrable
models, signatures of diffusion have been reported, e.g., for
the spin-1/2 XXZ chain above the isotropic point [31–36]
and the Fermi-Hubbard model for strong particle-particle
interactions [37–39]. Moreover, significant progress in under-
standing transport in integrable models was recently achieved
within the framework of generalized hydrodynamics [40–42].
On the other hand, in more realistic situations, integrability
is often lifted due to various perturbations, e.g., spin-phonon
coupling [43], long-range interactions [44], dimerization [45],
and the presence of impurities [46] or disorder [47]. Such
nonintegrable systems are commonly expected to have van-
ishing Drude weights [30] and potentially exhibit diffusive
transport, e.g., due to quantum chaos. Notably, the onset of
diffusive hydrodynamics under chaotic quantum dynamics
has also been substantiated by exact results obtained in ran-
dom circuit models [48–50]. However, since the dynamics of
real interacting systems with many degrees of freedom poses
a formidable challenge to theory and numerics, signatures of
clean diffusion have been found only for selected examples
[34,51–54].
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In this context, we study the dynamics of magnetiza-
tion and energy in a nonintegrable spin-1/2 system with
ladder geometry. In particular, we will demonstrate an effi-
cient numerical approach based on the concept of typicality
[22–25,55–60], which enables us to study large system sizes
and to detect various signatures of diffusive transport.

This paper is structured as follows. We introduce the model
in Sec. II and define the observables in Sec. III. In Sec. IV,
we outline our numerical approach and present our results in
Sec. V. We summarize and conclude in Sec. VI.

II. THE MODEL

The Hamiltonian H = ∑L
l=1 hl of the spin-1/2 ladder with

periodic boundary conditions reads

hl = J||
2∑

k=1

Sl,k · Sl+1,k + J⊥
2

l+1∑
n=l

Sn,1 · Sn,2, (1)

where Sr = (Sx
r , Sy

r, Sz
r ) are spin-1/2 operators on lattice site

r = (l, k), J|| = 1 denotes the coupling along the legs (and
sets the energy scale throughout this paper), and J⊥ � 0 is
the coupling on the L rungs. While, for J⊥ = 0, H decouples
into two separate chains and is integrable in terms of the
Bethe ansatz [61], this integrability is broken for any J⊥ �=
0. Numerous works [62–67] have explored the dynamics of
the spin ladder (1), including various modifications such as
four-spin terms [68], Kitaev-type couplings [69], and XX-
ladder systems [70,71]. However, while these studies often
discuss either spin or energy transport, they also mostly focus
exclusively on the dynamics of densities or currents, either in
time or in frequency.

In this paper, we do not focus on a particular quantity
and representation and provide a comprehensive picture of
high-temperature dynamics in the spin-1/2 ladder. As a main
result, we unveil the existence of genuine diffusion for both
magnetization and energy. In particular, this result is based on
the combination of four distinct signatures: (i) Gaussian den-
sity profiles, (ii) time-independent diffusion coefficients, (iii)
exponentially decaying density modes, and (iv) Lorentzian
line shapes of the dynamical structure factor. We present these
signatures for large systems with up to 40 lattice sites.

III. SETUP AND OBSERVABLES

We study the dynamics of time-dependent expectation
values

pl (t ) = 〈ψ (t )| �l |ψ (t )〉 , �l =
{

Sz
l,1 + Sz

l,2,

hl ,
(2)

where the time argument has to be understood as |ψ (t )〉 =
e−iHt |ψ (0)〉 and the operator �l denotes the local densities
of magnetization or energy (see Fig. 1). Furthermore, the
(unnormalized) pure initial state |ψ (0)〉 is prepared as

|ψ (0)〉 =
√

�̃L/2 |ϕ〉√〈ϕ|ϕ〉 ; |ϕ〉 =
d∑

k=1

ck |ϕk〉 , (3)

where the complex coefficients ck are randomly drawn from
a Gaussian distribution with zero mean (Haar measure [72])
and |ϕk〉 denote a set of orthonormal basis states (e.g., the

FIG. 1. Sketch of the local densities �l . (a) Local magnetization
Sz

l,1 + Sz
l,2. (b) Local energy hl . Note that hl is defined with J⊥/2

[see Eq. (1)].

Ising basis) of the full Hilbert space with dimension d = 4L.
Moreover, the operator �̃L/2 = �L/2 + c in Eq. (3) is essen-
tially equivalent to �L/2 except for a constant offset which
renders the eigenvalues of �̃L/2 nonnegative. Exploiting the
concept of dynamical typicality [72,73], as well as Tr[�l ] = 0,
the expectation value pl (t ) can be connected to an equilib-
rium correlation function at formally infinite temperature (see
Sec. IV),

pl (t ) = 〈�l (t )�L/2〉 + ε, (4)

with 〈·〉 = Tr[·]/d . Note that the statistical error ε = ε(|ϕ〉)
scales as ε ∝ 1/

√
d and is negligibly small for all system sizes

studied here [55,57,72,73].
In addition to the spatiotemporal correlation functions (4),

the respective correlations in momentum space can be ob-
tained by a lattice Fourier transform [74],

pq(t ) =
∑

l

eiq(l−L/2) pl (t ) = 〈�q(t )�−q〉, (5)

where translational invariance has been exploited and �q =√
1/L

∑
l eiql�l , with discrete momenta q = 2πk/L and k =

0, 1, . . . , L − 1. Furthermore, a subsequent Fourier transform
from the time to frequency domain eventually yields the
dynamical structure factor S(q, ω),

pq(ω) =
∫ tmax

−tmax

eiωt pq(t ) dt = S(q, ω), (6)

with the finite frequency resolution δω = π/tmax.
It is further instructive to establish a relation between

density dynamics and current-current correlation functions.
To this end, let us introduce the time-dependent diffusion
coefficient [75]

D(t ) = 1

χ

∫ t

0

〈 j(t ′) j〉
L

dt ′, (7)

where χ = limq→0〈�q�−q〉 denotes the isothermal suscepti-
bility [76] and the spin- or energy-current operators j = ∑

l jl
follow from the lattice continuity equation ∂t�l = i[H, �l ] =
jl−1 − jl . More details on current operators and autocorrela-
tion functions are provided in Appendix A.

To proceed, we note that the states |ψ (0)〉 realize an initial
density profile pl (0) which exhibits a δ peak at l = L/2 [77].
This initial δ peak will gradually broaden with time, and its
spatial variance for t � 0 is given by

σ (t )2 =
L∑

l=1

l2δpl (t ) −
(

L∑
l=1

lδpl (t )

)2

, (8)
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with δpl (t ) = pl (t )/
∑

l pl (0) and
∑

l δpl (t ) = 1. Due to the
typicality relation in Eq. (4), this variance can be directly
connected to the aforementioned diffusion coefficient [78,79],

d

dt
σ (t )2 = 2D(t ). (9)

Note that a diffusive process requires D(t ) = D = const, such
that σ (t ) ∝ √

t [34], above the mean free time.

IV. NUMERICAL APPROACH

A. Dynamical quantum typicality

First, let us derive the typicality relation given in Eq. (4).
To this end, we start with an infinite-temperature correlation
function,

Cl,l ′ (t ) = Tr[�l (t )�̃l ′]

d
= Tr[�l (t )�l ′] + cTr[�l ]

d
, (10)

where �̃l ′ = �l ′ + c has a nonnegative spectrum. We realize
that Eq. (10) can be simplified if either c = 0 or Tr[�l ] = 0.
Focusing on these cases, we find

Cl,l ′ (t ) = Tr[�l (t )�l ′]

d
= 〈�l (t )�l ′ 〉, (11)

that is, the correlation functions 〈�l (t )�̃l ′ 〉 and 〈�l (t )�l ′ 〉 are
equivalent. This is the first important observation. Further-
more, exploiting the cyclic invariance of the trace, Eq. (10)
can be written as

Cl,l ′ (t ) = Tr[
√

�̃l ′�l (t )
√

�̃l ′]

d
, (12)

where the square-root operation has to be understood in a
representation where �̃l ′ is diagonal (see Sec. IV B). Using
the concept of quantum typicality [22–25,55–60], the trace in
Eq. (12) can be replaced by a scalar product with a single pure
state |ϕ〉 which is randomly drawn according to the unitary
invariant Haar measure,

Cl,l ′ (t ) ≈ 〈ϕ| √�̃l ′�l (t )
√

�̃l ′ |ϕ〉
〈ϕ|ϕ〉 + ε(|ϕ〉) (13)

= 〈ψ (0)| �l (t ) |ψ (0)〉 = 〈ψ (t )| �l |ψ (t )〉 , (14)

where we have used the definition of |ψ (0)〉 from Eq. (3) and
interpreted the time dependence as a property of the states and
not of the operator. The combination of Eqs. (10) to (14) yields
the typicality relation (4), where we have chosen l ′ = L/2
without loss of generality.

B. Construction of initial states

Concerning the construction of the pure state |ψ (0)〉 in
Eq. (3), i.e., the evaluation of the square root

√
�̃L/2, the

following comments are in order. On the one hand, in the case
of �l = Sz

l,1 + Sz
l,2 this procedure is rather simple since Sz

l,1 +
Sz

l,2 is naturally diagonal in the Ising basis, which is routinely
used as our working basis. On the other hand, in the case of
the local energy, �l = hl is not diagonal immediately. While
this situation usually requires diagonalization, a complete
diagonalization of hl can still be avoided since hl is a local
operator acting nontrivially only on a small part of the product
space. Thus, although the preparation of |ψ (0)〉 becomes more

demanding in the case of �l = hl , it certainly remains feasible
and yields a powerful numerical approach as well. If one
still wants to refrain from such square-root constructions, it
is also possible to use two auxiliary pure states instead of
just one (see Appendix A). It should be noted, however, that
the approach presented in this paper, using just a single pure
state, will generally be more favorable concerning memory
requirements and run time (even if the initial preparation of
|ψ (0)〉 is costlier).

C. Pure-state propagation

Relying on the typicality relation (4), we calculate spa-
tiotemporal correlation functions for spin and energy densi-
ties. The main advantage of this approach comes from the
fact that the action of e−iHt on the pure state |ψ (0)〉 can be
efficiently evaluated without the diagonalization of H, e.g., by
means of a Trotter decomposition [80] (see also Appendix B)
or by other approaches [81–83]. Moreover, let us stress that
the numerical costs of the Fourier transforms (5) and (6) are
practically negligible. Therefore, we essentially obtain all in-
formation on the dynamics of either magnetization or energy
from the time evolution of the single pure state |ψ (t )〉 and
the measurement of L local operators �l (see Appendix C). In
practice, this pure-state approach enables us to treat ladders
with up to L = 20 rungs, i.e., 40 lattice sites in total. If not
stated otherwise, we always take into account the full Hilbert
space (e.g., d ≈ 1012 for L = 20).

D. Finite temperatures

Although the focus of this paper is on quantum dynamics
at formally infinite temperature, let us briefly outline how
finite-temperature correlations can be obtained based on pure-
state calculations as well. On the one hand, a straightforward
approach is the construction of the typical pure state |ϕβ〉
according to [57,60]

|ϕβ〉 = e−βH/2 |ϕ〉 , (15)

where the reference pure state |ϕ〉 corresponds to infinite
temperature and has been introduced in Eq. (3). Analogous
to the real-time evolution, the action of e−βH/2 can be ef-
ficiently evaluated by an iterative forward propagation, but
now in imaginary time. More details on finite-temperature
calculations using |ϕβ〉 can be found in Appendix A.

On the other hand, another useful class of pure states
|ϕ̃α,β〉, which was put forward in Ref. [84], is constructed as

|ϕ̃α,β〉 ∝ e−β(H−α�l′ )/2 |ϕ〉 . (16)

In particular, depending on the size of the control parameter α,
these states can be used not only to obtain linear-response cor-
relation functions but also to calculate far-from-equilibrium
quantum dynamics [21,84].

Finally, let us note that, since the effective Hilbert-space
dimension shrinks for β > 0, the statistical error ε of the
typicality approximation [see Eq. (4)] is generally larger than
the infinite-temperature limit. Nevertheless, even for β > 0
this error still decreases exponentially with system size, and
accurate calculations remain possible for moderate tempera-
tures.
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50 t

l 0

0.5

FIG. 2. Real-time broadening of density profiles pl (t ) for spin
�l = Sz

l,1 + Sz
l,2 and energy �l = hl . The other parameters are J‖ =

J⊥ = 1 and L = 20.

V. RESULTS

We now present our numerical results. In Sec. V A, we
start with the analysis of density dynamics in real space.
The corresponding structure factors are then discussed for
magnetization in Sec. V B and for energy in Sec. V C.

A. Real-space dynamics

To begin with, let us focus on the isotropic case J‖ = J⊥ =
1. Starting with dynamics in time and real space, Figs. 2(a)
and 2(b) show the density profiles pl (t ) of magnetization and
energy for large systems with L = 20. One can clearly observe
the initial δ peak at t = 0 (or almost δ peak [77]), which
broadens for times t > 0. Moreover, on the (short) timescales
depicted, pl (t ) does not reach the boundaries of the system;
that is, trivial finite-size effects do not occur.

For a more detailed discussion, Figs. 3(a) and 3(b) show
cuts of pl (t ) at fixed times t = 0, 1, 2, 4. For these times,
one finds that the data are well described by Gaussians over

several orders of magnitude,

pl (t ) ∝ exp

[
− (l − L/2)2

2σ (t )2

]
. (17)

While these Gaussians already suggest diffusion for both
magnetization and energy (see Appendix D), it is only a
sufficient criterion if σ (t ) scales as σ (t ) ∝ √

t as well. Con-
sequently, Figs. 3(c) and 3(d) show the widths of the density
profiles obtained from Eq. (8) (symbols) in comparison with
the respective quantities D(t ) and σ (t ) (lines), calculated
from the current autocorrelations [see Eqs. (7) and (9)].
Generally, one observes excellent agreement between density
and current dynamics. Moreover, after a linear increase at
short times, D(t ) eventually saturates at a constant plateau
D(t ) ≈ const, and correspondingly, σ (t ) ∝ √

t . Thus, based
on our numerical analysis in time and real space, we unveil
the existence of diffusive transport in the spin-1/2 ladder for
both magnetization and energy. This is the first main result of
this paper.

Let us now briefly present magnetization profiles also for
other ratios J⊥/J‖ �= 1. To this end, Fig. 4 shows the real-space
density profiles pl (t ) at fixed times t = 1, 2, 4 for interchain
couplings J⊥ = 0.5, 1, 2 (J‖ = 1). Generally, we find that the
profiles are very similar to each other for all t and J⊥ shown
here. In particular, all profiles are convincingly described by
Gaussian fits over several orders of magnitude.

B. Spin structure factor

Next, let us also study magnetization dynamics in momen-
tum space, where the lattice diffusion equation decouples into
separate Fourier modes (see Appendix D).

1. Long-wavelength limit

In Fig. 5(a), the density modes pq(t ) for J‖ = J⊥ = 1 are
shown for various momenta q in a semilogarithmic plot. On
the one hand, for large q = π , pq(t ) exhibits pronounced
oscillations and essentially decays on a timescale t ∼ 5. On
the other hand, for the two smallest wave numbers k = 1 and
k = 2, we find clean exponential relaxation

pq(t ) ∝ e−q̃2Dt , (18)

10−5

10−4

10−3

10−2

10−1

100

21 0

0

2

4

80

21 0

t = 1, 2, 4

80

p
l(

t)

l

t = 1, 2, 4

D
(t

),
σ
(t

)

t

D(t)
σ(t)

l

t

D(t)
σ(t)

FIG. 3. (a) and (b) Density profiles pl (t ) for
spin and energy at fixed times t = 0 (δ peak) and
t = 1, 2, 4 (arrow). The dashed lines are Gaussian
fits to the data. (c) and (d) Widths of the density
profiles (symbols) obtained from Eq. (8), as well
as D(t ) and σ (t ) (lines) calculated from current
autocorrelations [see Eqs. (7) and (9)]. For suf-
ficiently long times, one finds D(t ) ≈ const. The
other parameters are J‖ = J⊥ = 1, L = 20 (densi-
ties), L = 18 (spin current), and L = 15 (energy
current [67]).
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10−3

10−2

10−1
t = 2

10−4

10−3

10−2

10−1
t = 4

p
l(

t)
J⊥ = 0.5
J⊥ = 1.0
J⊥ = 2.0

p
l(

t)
p

l(
t)

l

FIG. 4. Magnetization profiles pl (t ) at fixed times t = 1, 2, 4.
Comparison between different interchain couplings J⊥ = 0.5, 1, 2.
The dashed lines are Gaussian fits to the data. The other parameters
are J‖ = 1 and L = 18.

where we have introduced the abbreviation q̃2 = 2[1 −
cos(q)] ≈ q2 for sufficiently small q and D = const can be ex-
tracted from the constant plateau in Fig. 3(c). Going from the
time to frequency domain, Fig. 5(b) shows the corresponding
dynamical structure factors pq(ω) for k = 1, 2. One observes

0.01

0.1

1
(a)

(b) (c)

20 0

q = π 2π
8

π
8

0

5

10

0 1
0

1

0 4

|p q
(t

)|

t

∝ exp(−q̃2Dt)

p
q
(ω

)

ω

∝ 1
ω2+q̃4D2

×2

ω

q = π

γ

q

0

3

ω

0

5

10

π/2 π 3π/2 2π

(d)

FIG. 5. Spin dynamics. (a) pq(t ) for wave numbers k = 1, 2, 8
in a semilogarithmic plot. Lines are exponential functions according
to Eq. (18). (b) pq(ω) for k = 1, 2. Lines are Lorentzians according
to Eq. (19). (c) pq(ω) for k = 8. Comparison with the XY model
[Eq. (20)] and an effective model (γ XY) where the original memory
kernel of the Bessel function is exponentially damped (here γ = 0.6)
[85]. The XY data are multiplied by a factor of 2 in order to account
for the two legs of the ladder. (d) pq(ω) in the full Brillouin zone.
Arrows show the data of (b) and (c). Other parameters are J‖ = J⊥ =
1, L = 16, and δω = π/150.

0.01

0.1
(a)

(b) (c)

1

20 0

q = 2π
9

0

5

10

0 2
0

1

0 4

|p q
(t

)|

t

J⊥ = 0.5
J⊥ = 1.0
J⊥ = 2.0

q = π
9

p
q
(ω

)

ω

q = π/9

ω

q = π

FIG. 6. Spin dynamics for different interchain couplings J⊥ =
0.5, 1, 2. (a) pq(t ) for the two smallest wave numbers, k = 1, 2.
(b) and (c) pq(ω) for k = 1 and k = 9, respectively. Other parameters
are J‖ = 1, L = 18, and δω = π/25.

that the data can be accurately described by Lorentzians of the
form

pq(ω) ∝ 1

ω2 + q̃4D2
. (19)

Note that, while we display the time data in Fig. 5(a) only
up to intermediate timescales, the Fourier transform (6) is
routinely performed for a much longer cutoff time (here
tmax = 150) in order to achieve a high frequency resolution.
The exponential relaxation [Fig. 5(a)] and the Lorentzian line
shapes [Fig. 5(b)] clearly confirm our earlier observations in
the context of Fig. 3, i.e., the occurrence of genuine spin
diffusion in the spin-1/2 ladder. This is another main result
of the present work.

Eventually, Fig. 5(d) shows the dynamical structure factor
pq(ω) for all momenta q. Let us stress again that within our
numerical approach the calculation of these density modes
essentially does not require any additional resources. On
the one hand, for small momenta q → 0, one can clearly
identify the diffusion peaks discussed above. On the other
hand, in the center of the Brillouin zone, we find that pq(ω)
exhibits a broad continuum. This short-wavelength limit will
be discussed below in more detail.

In order to corroborate once more that the emergence of
diffusive transport is not restricted to the isotropic point,
Fig. 6 shows the structure factors pq(t ) and pq(ω) for J⊥ =
0.5, 1, 2. For the smallest wave number k = 1, we find a clean
exponential decay of pq(t ) with a decay rate −q̃2D, which
is almost identical for all J⊥ shown here. This fact is also
reflected in the Lorentzian shape of pq(t ) for this momentum
[Fig. 6(b)], which essentially coincides for all strengths of
interchain couplings. On the other hand, for wave number
k = 2, we find that pq(t ) for J⊥ = 0.5 shows some devia-
tions from an exponential; that is, the hydrodynamic regime
becomes smaller for smaller J⊥, which can be explained by
the increased mean free path of spin excitations.

2. Short-wavelength limit

In addition to the long-wavelength limit, Fig. 5(c) shows
pq(ω) at momentum q = π . For this momentum, one finds
that pq(ω) is practically ω independent up to ω � 2 and
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0
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p
q
=

π
(t

)

t

FIG. 7. Comparison of pq=π (t ) between the spin ladder with
J‖ = J⊥ = 1 [Fig. 5(a)], the bare XY model (Bessel function), and
the effective dynamics p̃q(t ) (γ XY) [see Eqs. (21) and (23)] with
damping γ = 0.6. The XY data are multiplied by a factor of 2 in
order to account for the two legs of the ladder.

exhibits a constant plateau. It is instructive to compare this
result to the dynamics of the one-dimensional XY model.
Since the XY chain is equivalent to a model of free fermions,
pq(ω) is known exactly [74] and reads (for β → 0, J‖ = 1,
and q = π )

pq=π (ω) =
∫ ∞

−∞
eiωt J0(2t )

4
dt = �(2 − |ω|)

2
√

4 − ω2
. (20)

Here, J0(t ) is the Bessel function of the first kind (and
order zero), and pq=π (ω) exhibits a square-root divergence at
ω = 2 [see Fig. 5(c)]. Following an approach introduced in
Ref. [85], the dynamics pq(t ) ∝ J0(2t ) is interpreted as being
generated by an integro-differential equation comprising a
memory kernel K (t ),

d

dt
pq(t ) = −

∫ t

0
K (t − t ′)pq(t ′)dt ′. (21)

Equation (21) establishes a direct correspondence between
pq(t ) and K (τ ) and can be evaluated in both directions. Thus,
given the original dynamics pq(t ) ∝ J0(2t ), the respective
memory kernel K (τ ) can be calculated, e.g., numerically.
In fact, given the expression in Eq. (20), K (τ ) can even be
obtained analytically and reads

K (τ ) = 2J1(2τ )

τ
. (22)

Comparing the bare XY model with the full spin ladder (1),
the additional rung couplings and the Sz

rSz
r′ terms are treated

as a perturbation giving rise to an exponential damping of this
memory kernel (for small perturbations) [85,86],

K̃ (τ ) = K (τ )e−γ τ . (23)

This new memory kernel K̃ (τ ) is then used to numerically
evaluate Eq. (21) in order to obtain the new (damped) dy-
namics p̃q(t ). As shown in Fig. 5(c), the effective dynamics
generated by this (heuristic) approach with γ = 0.6 repro-
duces the structure factor of the spin ladder remarkably well,
even though the perturbation is not small. Moreover, as shown
in Fig. 7, this convincing agreement between spin ladder
and effective model can be observed not only in frequency
space but also in real time. Let us note that, while γ = 0.6 is
found to describe the data most accurately, a more quantitative
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FIG. 8. Energy dynamics. (a) pq(t ) for k = 1, 2, 8. (b) pq(ω) for
k = 1, 2. (c) pq(ω) for k = 7, 8. (d) pq(ω) in the full Brillouin zone.
Other parameters are J‖ = J⊥ = 1, L = 16, and δω = π/150.

understanding of this specific value goes beyond the scope of
the present paper (see also Ref. [86]).

Thus, while clear signatures of diffusion can be found
for long-wavelength modes [see Figs. 5(a) and 5(b)], the
relaxation of pq(t ) for q → π can be qualitatively understood
as the (damped) dynamics of free fermions, e.g., since the
wavelength is smaller than the mean free path. Note that
similar behavior has also been found for XXZ chains [74,87].

C. Energy structure factor

We now present results for energy dynamics in momentum
space. Analogously to the discussion in the context of Fig. 5,
Fig. 8 shows the energy structure factors pq(t ) and pq(ω)
of the isotropic spin ladder for short and long wavelengths.
Generally, the results for energy dynamics are very similar to
the previously discussed case of magnetization; that is, pq(t )
decays exponentially for small q, while the corresponding
pq(ω) exhibits a Lorentzian line shape. Thus, the data shown
in Fig. 8 confirm the existence of diffusive energy transport as
well (see also Refs. [62,66,67]).

Finally, it is instructive to discuss the effect of an additional
uniform magnetic field B > 0 in the z direction; that is, the
new local energy h̃l reads

h̃l = hl + B

2

l+1∑
n=l

2∑
k=1

Sz
n,k, (24)

where hl is defined according to Eq. (1). Such a modification
results in a magnetothermal correction, and the heat current
takes on the form

j̃E = jE + B jS, (25)

where the spin current jS is independent of B. For specific
expressions of jS and jE , see Appendix A. In Fig. 9, we
depict the energy structure factors pq(t ) and pq(ω) in the
time as well as the frequency domain for various momenta q.
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FIG. 9. Energy dynamics in the presence of a magnetic field.
Calculations are performed only in the subsector with Sz = 0. The
other parameters are J‖ = J⊥ = B = 1, L = 14, and δω = π/25.

Note that we restrict ourselves to the symmetry subspace with
magnetization Sz = 0. Generally, we find that the presence
of a finite magnetic field does not qualitatively change the
behavior of pq(t ) and pq(ω). Again, one can observe an
exponential decay for the two smallest wave numbers k = 1, 2
and, correspondingly, a Lorentzian line shape in frequency
space at these momenta. Compared to the results with B = 0
shown in Fig. 8, one might even argue that those signatures
of diffusion are slightly improved due to the finite magnetic
field.

VI. CONCLUSION

To summarize, we have studied spin and energy dynamics
in the spin-1/2 ladder for large systems with up to 40 lattice
sites. Our state-of-the-art numerical simulations have unveiled
the existence of genuine diffusion for both spin and energy.
In particular, this finding is based on four distinct signatures
which have all been equally well detected: (i) Gaussian den-
sity profiles, (ii) time-independent diffusion coefficients, (iii)
exponentially decaying density modes, and (iv) Lorentzian
line shapes of the dynamical structure factor. Combining (i)–
(iv), this paper provides a comprehensive picture of high-
temperature dynamics in the spin-1/2 ladder. Promising direc-
tions of research include, e.g., the application of the pure-state
approach to a larger class of condensed-matter systems and a
wider range of temperatures [88]. In this context, whether the
observed signatures of diffusion persist at lower temperatures
is also an intriguing question.
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APPENDIX A: CURRENT OPERATORS
AND AUTOCORRELATIONS

The spin current jS is defined as [66]

jS = J‖
L∑

l=1

2∑
k=1

(
Sx

l,kSy
l+1,k − Sy

l,kSx
l+1,k

)
. (A1)

Moreover, the energy current jE = j‖ + j⊥ can be written as
the sum of a longitudinal part and a perpendicular part, which
read [62,67]

j‖ = J2
‖

L∑
l=1

2∑
k=1

Sl−1,k · (Sl,k × Sl+1,k ), (A2)

j⊥ = J‖J⊥
2

L∑
l=1

2∑
k=1

(Sl−1,k − Sl+1,k ) · (Sl,k × Sl,3−k ). (A3)

In order to calculate current-current correlation functions
〈 j(t ) j〉 by means of a typicality-based approach directly (at
finite or infinite temperature), we use the two auxiliary pure
states [60],

|ϕ(β, t )〉 = e−iHt e−βH/2 |ϕ〉 , (A4)

|φ(β, t )〉 = e−iHt je−βH/2 |ϕ〉 , (A5)

which differ by only the additional current operator in
Eq. (A5), where |ϕ〉 is again a random state drawn according
to the Haar measure [see Eq. (3)]. Then, we can write [60]

〈 j(t ) j〉 = 〈ϕ(β, t )| j |φ(β, t )〉
〈ϕ(β, 0)|ϕ(β, 0〉 + ε(|ϕ〉), (A6)

where again ε(|ϕ〉) ∝ 1/
√

d for β → 0. Of course, by replac-
ing the current operator j in Eqs. (A5) and (A6), it is straight-
forward to generalize the above approach in order to calculate
dynamic correlation functions also for other operators.

While we already introduced the time-dependent diffusion
coefficient D(t ) for spin and energy transport in Eq. (7), the
respective ac conductivities at finite frequency ω are given by
the Fourier transform of the current autocorrelations,

Reσ (ω) = 1 − e−βω

ωL
Re

∫ ∞

0
eiωt 〈 jS (t ) jS〉 dt, (A7)

Reκ (ω) = β
1 − e−βω

ωL
Re

∫ ∞

0
eiωt 〈 jE (t ) jE 〉 dt . (A8)

Note that the spin conductivity σ (ω) from Eq. (A7) must
not be confused with the spatial variance σ (t ) introduced
in Eq. (8). Omitting the possibility of finite Drude
weights, the corresponding dc conductivities are given by
limω→0 σ [κ](ω) = σ [κ]dc and can be connected to the dif-
fusion constant via the Einstein relation D = D(t → ∞) =
σ [κ]dc/χ [see Eq. (7)]. Let us note that, since the Fourier
transforms in Eqs. (A7) and (A8) can, in practice, be evalu-
ated only up to a finite cutoff time tmax < ∞, the frequency
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FIG. 10. Current autocorrelations. (a) Spin current jS for J⊥ =
0.5, 1, 2 and β = 0. (b) Energy current jE for J⊥ = 1, 2 and β = 0.
(c) Spin and energy current for β = 1 and J⊥ = 1. For comparison,
we depict tDMRG data digitized from Ref. [66]. Note that in the
case of jE we restrict ourselves to the symmetry subspaces with
momentum k = 0. Other parameters are J‖ = 1, L = 13 (spin), and
L = 15 (energy).

resolution of σ [κ](ω) is finite as well [see also Eq. (6) in the
main text].

In Figs. 10(a) and 10(b), the current autocorrelations
〈 j(t ) j〉 at β = 0 are shown for spin and energy transport,
respectively. While in Fig. 10(a) we show data for smaller sys-
tems with only L = 13 rungs, the energy current in Fig. 10(b)
is calculated for systems with L = 15. Note, however, that
in the latter case, we restrict ourselves to the symmetry
subspaces with momentum k = 0 as the current is known to
be essentially independent of k for such system sizes. [This
crystal momentum k should not be confused with the wave
number k below Eq. (5).] In all cases shown here, we observe
that 〈 j(t ) j〉 decays to approximately zero, consistent with the
absence of ballistic transport in a nonintegrable system. In the
case J⊥/J‖ = 1, our results are additionally compared to data
digitized from Ref. [66] obtained by a time-dependent density
matrix renormalization group (tDMRG) approach. Generally,
one finds convincing agreement between both methods; that
is, our data for L = 13, 15 are free of significant finite-size
effects and represent the thermodynamic limit. In Fig. 10(c),
spin and energy autocorrelations are depicted for the finite
temperature β = 1. Also in this case, we observe that the pure-
state method accurately reproduces the tDMRG data. Thus,

0
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0
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0 1 2 3

R
e
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)/
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κ
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FIG. 11. (a) Spin conductivity σ (ω) for J⊥ = 0.5, 1, 2. (b) En-
ergy conductivity κ (ω) for J⊥ = 1, 2. We show data for two dif-
ferent frequency resolutions, δω = π/10 (solid symbols) and δω =
π/50 (open symbols). For comparison, tDMRG data digitized from
Ref. [66] are shown. In (b), we also compare our results to data
obtained from the microcanonical Lanczos method (MCLM) [62].
In the case of κ (ω) we restrict ourselves to the symmetry subspaces
with momentum k = 0. Other parameters are J‖ = 1, β = 0, L = 13
(spin), and L = 15 (energy).

typical pure states yield an efficient approach to correlation
functions at finite temperatures as well.

In Figs. 11(a) and 11(b) the respective ac conductivities
σ (ω) and κ (ω) at β = 0 are shown, i.e., the Fourier transforms
of the data in Figs. 10(a) and 10(b). Particularly, we compare
data with two different frequency resolutions, δω = π/10
and δω = π/50, i.e., a rather short and a significantly longer
cutoff time tmax in Eqs. (A7) and (A8). In all cases, we observe
a well-behaved dc conductivity σ [κ]dc > 0 which does not
(significantly) depend on tmax, except κ (ω) for J⊥ = 2. More-
over, our data are again in good agreement with existing data
obtained by tDMRG [66] and by the microcanonical Lanczos
method [62].

APPENDIX B: TROTTER DECOMPOSITION

Let us briefly give some details on the time evolution of
pure quantum states by means of a Trotter decomposition.
To begin with, we note that the time-dependent Schrödinger
equation

i∂t |ψ (t )〉 = H |ψ (t )〉 (B1)

is formally solved by

|ψ (t ′)〉 = U (t, t ′) |ψ (t )〉 , (B2)

with U (t, t ′) = e−iH(t ′−t ), where we have set h̄ = 1. While the
exact evaluation of Eq. (B2) requires the diagonalization of
H, we here approximate the time-evolution operator U (t, t ′)
by means of a Trotter product formula. Specifically, a second-
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order approximation of U (t, t + δt ) = U (δt ) is given by

Ũ2(δt ) = e−i δt
2 Hk · · · e−i δt

2 H1 e−i δt
2 H1 · · · e−i δt

2 Hk , (B3)

where H = H1 + · · · + Hk . This approximation is then
bounded by

||U (δt ) − Ũ2(δt )|| � c2 δt3, (B4)

where c2 is a positive constant. In practice, the Hamiltonian is
decomposed into the x, y, and z components of the spin opera-
tors, i.e., H = Hx + Hy + Hz. Since the computational basis
states are eigenstates of the Sz operators, the representation
e−iδtHz is diagonal by construction and only changes the input
state by altering the phase of each of the basis vectors. Using
an efficient basis rotation in the eigenstates of the Sx or Sy

operators, the operators e−iδtHx and e−iδtHy can act as e−iδtHz

as well [80].

APPENDIX C: FOURIER TRANSFORMS

Let us comment on the derivation of Eqs. (5) and (6) from
the main part of this paper. Referring to Eq. (4), we realize
that a cut through the density profile pl (t ) at fixed lattice site l
is equivalent to the correlation function 〈�l (t )�L/2〉. It is now
instructive to perform the following calculation:

〈�q(t )�−q〉 = 1

L

L∑
l=1

L∑
l ′=1

eiq(l−l ′ )〈�l (t )�l ′ 〉 (C1)

=
L∑

l=1

eiql〈�L/2+l (t )�L/2〉 (C2)

=
L∑

l=1

eiq(l−L/2) pl (t ) = pq(t ), (C3)

where we have exploited translational invariance in order to
compress the original double sum. Thus, we find that the
intermediate structure factor 〈�q(t )�−q〉 can be easily obtained
by a lattice Fourier transform of the real-space correlations.
Furthermore, this momentum-space correlation function can
also be transferred to what is usually referred to as the dy-

namical structure factor S(q, ω) by another Fourier transform
from the time to frequency domain,

S(q, ω) =
∫ ∞

−∞
eiωt 〈�q(t )�−q〉 dt (C4)

≈
∫ tmax

−tmax

eiωt pq(t ) dt = pq(ω), (C5)

where the finite cutoff time tmax yields a frequency resolution
δω = π/tmax. Thus, starting from the correlations pl (t ), it
is straightforward to also obtain correlation functions in the
momentum and frequency domains, which makes our pure-
state method a rather powerful numerical approach.

APPENDIX D: DIFFUSION IN LATTICE MODELS

In this Appendix, let us discuss in more detail how to detect
diffusion in lattice models. To begin with, a process is called
diffusive if it fulfills the lattice diffusion equation

d

dt
pl (t ) = D[pl−1(t ) − 2pl (t ) + pl+1(t )], (D1)

with the time-independent diffusion constant D. In the case of
an initial δ peak profile at l = L/2, a specific solution for the
time dependence of pt (t ) is given by [54]

pl (t ) − peq = 1
2 exp(−2Dt )Bl−L/2(2Dt ), (D2)

where Bl (t ) is the modified Bessel function of the first kind
and peq = pl �=L/2(0) denotes the homogeneous background.
(Note that in this paper we have peq = 0 since Tr[�l ] = 0.)
In the case of sufficiently large L and long t , i.e., if the
discrete lattice momenta q become dense, this lattice solution
can be well approximated by a Gaussian. Such Gaussians
are observed in Figs. 3(a) and 3(b). Specifically, the spatial
variance of these Gaussians is then also given by σ 2(t ) = 2Dt ,
i.e., σ (t ) ∝ √

t .
Given some general density distribution, it is in some cases

instructive to study the dynamics in momentum space as well.
In this context, a Fourier transform of Eq. (D1) yields

d

dt
pq(t ) = −2D(1 − cos q)pq(t ). (D3)

Apparently, the L different Fourier modes pq(t ) are com-
pletely decoupled, and their exponentially decaying solutions
have already been given in Eq. (18).
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