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The interaction between a quantum system, called a
central system in what follows, and its environment
affects the state of the former. Intuitively, we expect
that by turning on the interaction with the environment,
the fluctuations in the environment will lead to a reduc-
tion of the coherence in the central system. This process
is called decoherence [1, 2]. In general, there are two
different mechanisms that contribute to decoherence. If
the environment is dissipative (or coupled to a dissipa-
tive system), the total energy is not conserved and the
central system + environment relax to a stationary equi-
librium state, for instance the thermal equilibrium state.
In this paper, we exclude this class of dissipative pro-
cesses and restrict ourselves to closed quantum systems
in which a small, central system is brought in contact
with a larger quantum system that is prepared in its
ground state. Then, the decoherence is solely due to fact
that the initial product state (the wave function of the
central system times the wave function of the environ-
ment) evolves into an entangled state of the whole sys-
tem. The interaction with the environment causes the
initial pure state of the central system to evolve into a
mixed state described by a reduced density matrix [3]
obtained by tracing out all the degrees of freedom of the
environment [1, 2, 4, 5].

Not all initial states are equally sensitive to decoher-
ence. The states that are robust with respect to the inter-
action with the environment are called pointer states
[2]. If the Hamiltonian of the central system is a pertur-
bation relative to the interaction Hamiltonian 

 

H

 

int

 

, the
pointer states are eigenstates of 

 

H

 

int

 

 [2, 6]. In this case,
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the pointer states are essentially classical states, such as
states with definite particle positions or with definite
spin directions of their individual particles for magnetic
systems. In general, these states, being a product of
states of individual particles forming the system, are
not entangled. On the other hand, decoherence does not
necessarily imply that the central system evolves into a
classical-like state. If 

 

H

 

int

 

 is much smaller than the typ-
ical energy differences in the central system, the pointer
states are eigenstates of the latter; that is, they may be
quantum states such as standing waves, stationary elec-
tron states in atoms, tunneling-split states for a particle
distributed between several potential wells, singlet or
triplet states for magnetic systems, etc. [6]. This may
explain, for example, the fact that one can observe lin-
ear atomic spectra; the initial states of an atom under
the equilibrium conditions are eigenstates of its Hamil-
tonian and not arbitrary superpositions thereof.

Let us now consider a central system for which the
ground state is a maximally entangled state, such as a
singlet. In the absence of dissipation and for an environ-
ment that is in the ground state before we bring it into
contact with this central system, the loss of phase
coherence induces one of the following qualitatively
different types of behavior:

(1) The interaction/bath dynamics is such that there
is very little relaxation.

(2) The system as a whole relaxes to some state
(which may or may not be close to the ground state),
and this state is a complicated superposition of the
states of the central system and the environment.
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(3) The system as a whole relaxes to a state that is
(to a good approximation) a direct product of the states
of the central system and a superposition of states of the
environment. In this case, there are two possibilities:

(a) The central system does not relax to its ground
state;

(b) The central system relaxes to its maximally
entangled ground state.

Only case 3b is special: The environment and cen-
tral system are not entangled (to a good approxima-
tion), but, nevertheless, the decoherence induces a very
strong entanglement in the central system. In this paper,
we demonstrate that, under suitable conditions, dissipa-
tion free decoherence forces the central system to relax
to a maximally entangled state that shows very little
entanglement with the state of the environment.

Most theoretical investigations of decoherence have
been carried out for oscillator models of the environ-
ment for which powerful path-integral techniques can
be used to treat the environment analytically [4, 5]. On
the other hand, it has been pointed out that a magnetic
environment described by quantum spins is essentially
different from the oscillator model in many aspects [7].
For the simplest model of a single spin in an external
magnetic field, some analytical results are known [7].
For the generic case of two or more spins, numerical
simulation [8, 9] is the main source of theoretical infor-
mation. Not much is known now about which physical
properties of the environment are important for the effi-
cient selection of pointer states. Recent numerical sim-
ulations [9] confirm the hypothesis [10] on the rele-
vance of the chaoticity of the environment, but its effect
is actually not drastic.

In this paper, we report on the results of numerical
simulations of quantum spin systems demonstrating the
crucial role of frustrations in the environment on deco-
herence. In particular, we show that, under appropriate
conditions, decoherence can cause an initially classical
state of the central system to evolve into the most
extreme, maximally entangled state. We emphasize that
we only consider systems in which the total energy is
conserved such that the decoherence is not due to dissi-
pation.

We study a model in which two antiferromagneti-
cally coupled spins called the central system interact
with an environment of spins. The model is defined by

(1)

where the exchange integrals 

 

J

 

 < 0 and  determine
the strength of the interaction between the spins 
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 =

( , , ) in the central system (
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) and the spins
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The exchange integrals  control the interaction
(

 

H

 

int

 

) of the central system with its environment. In
Eq. (2), the sum runs over the 
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 components of
the spin 1/2 operators. The number of spins in the envi-
ronment is 
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Fig. 1.
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izontal line at –1/4—correlation in the initial state (
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 = –1/4); Horizontal line at –3/4—expectation value

in the singlet state; (a) Environment containing 
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 = 14 quantum spins; (b) 
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 = 16; (c) 
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 = 18. The parameters  and  are

uniform random numbers in the range [–0.15
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]. Right—time evolution of the concurrence 
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realizations of a spin glass environment. The parameters are uniform random numbers in the range –0.15
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 = 14 quantum spins. The transition from an unentangled state (
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= 1) is clearly seen.
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Initially, the central system is in the spin-up–spin-
down state and the environment is in its ground state.
Thus, we write the initial state as 

 

|Ψ

 

(

 

t

 

 = 0)

 

〉

 

 = 

 

|↑↓〉|Φ

 

0

 

〉

 

.
The time evolution of the system is obtained by solving
the time-dependent Schrödinger equation for the many-
body wave function 

 

|Ψ

 

(

 

t

 

)〉  describing the central system
plus the environment. The numerical method that we
use is described in [11]. It conserves the energy of the
whole system to machine precision.

By changing the parameters of model (1), we
explore the conditions under which the central system
clearly shows an evolution from the initial spin-up–
spin-down state towards the maximally entangled sin-
glet state. We consider systems that range from the rota-
tionally invariant Heisenberg case to the extreme case
in which He and Hint reduce to the Ising model, topolo-
gies for which the central system couples to two and to
all the spins of the environment, and values of parame-
ters that are fixed or are allowed to fluctuate randomly.
Illustrative results of these calculations are shown in
Figs. 1–4. In the table, we present the corresponding
numerical data of the energy 〈Ψ(0)|H|Ψ(0)〉  =
〈Ψ(t)|H|Ψ(t)〉) and of the two-spin correlation 〈S1(t) ·
S2(t)〉  = 〈Ψ(t)|S1 · S2|Ψ(t)〉 . For comparison, the table
also contains the results of the energy E0 and of the two-
spin correlation 〈S1 · S2〉0 in the ground state of the
whole system as obtained by numerical diagonalization
of Hamiltonian Eq. (2).

Fig. 2. (in color online). Time evolution of the concurrence
C(t) for the case of a frustrated antiferromagnetic environ-
ment. The interactions of the central system and the envi-
ronment are uniform random numbers in the range –0.15|J |
≤  ≤ –0.05|J |. The environment contains 14 quantum

spins arranged on a triangular lattice and interacting with
nearest neighbors only. The nonzero exchange integrals are

uniform random numbers in the range –0.55|J | ≤  ≤ –

0.45|J |. The transition from an unentangled state (C(t) = 0)
to a nearly fully entangled state (C(t) = 1) is evident, as is
the onset of recurrent behavior due to the finite size of the
environment.
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Fig. 3. (in color online). Time evolution of the correlation
〈Ψ(t)|S1 · S2|Ψ(t)〉  of the two spins in the central system.
Environment containing N = 16 quantum spins. The dashed
horizontal line at –1/4—correlation in the initial state ((〈Ψ(t
= 0)|S1 · S2|Ψ(t = 0)〉; horizontal line at –3/4—correlation in

the singlet state. For all curves (a – f)  =  = 0; that

is, Hint is Ising-like. The values of  are the following:

(a) random –0.0375|J | or 0.0375|J |, (b–e) random –0.075|J |
or 0.075|J |, (f) random –0.15|J | or 0.15|J |. The values of

 are uniform random numbers in the following range:

(b) [–0.0375|J |, 0.0375|J |], (a, c) [[–0.15|J |, 0.15|J |], (d, f) [–
0.3|J |, 0.3|J |], and (e) [–|J |, |J |].
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Fig. 4. (in color online). Effect of the symmetry of the

exchange interactions  and  on the time evolution

of the correlation 〈Ψ(t)|S1 · S2|Ψ(t)〉  of the two spins in the
central system. Dashed horizontal line at –1/4—correlation
in the initial state (〈Ψ(t = 0)|S1 · S2|Ψ(t = 0)〉  = –1/4); hori-
zontal line at –3/4—correlation in the singlet state; the other
lines from top to bottom (at t|J | = 6000): (a) Ising Hint with
Ising He, N = 14; (b) Heisenberg-like Hint with Ising He, N
= 14; (c) Heisenberg-like Hint with Heisenberg-like He, N =
14; (d) Ising Hint with Heisenberg-like He, N = 14; (e) same
as (d) except that N = 18. We use the term Heisenberg-like

Hint (He) to indicate that  ( ) are uniform random

numbers in the range [–0.15|J |, 0.15|J |]. Likewise, Ising

Hint (He) means that  = 0 (  = 0); and 

( ) are random –0.075|J | or 0.075|J |.
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We monitor the effects of the decoherence by com-
puting the expectation value 〈Ψ(t)|S1 · S2|Ψ(t)〉 . The
central system is in the singlet state if 〈S1(t) · S2(t)〉  = –
3/4, that is, if 〈S1(t) · S2(t)〉  reaches its minimum value.
We also study the time evolution of the concurrence
C(t), which is a convenient measure for the entangle-
ment of the spins in the central system [12]. The con-
currence is equal to one if the central system is in the
singlet state and is zero for an unentangled pure state
such as the spin-up–spin-down state [12].

A very extensive search through the parameter
space leads to the following conclusions.

The maximum amount of entanglement strongly

depends on the values of the model parameters 

and . For the case in which there is strong decoher-
ence, increasing the size of the environment will
enhance the decoherence in the central system (cf. the
curves in Figs. 1a–1c and in Figs. 4d and 4e). Keeping
the size of the environment fixed, different realizations
of the random parameters do not significantly change
the results for the correlation and concurrence (right
panel of Fig. 1). However, the range of random values

 and  for which maximal entanglement can be
achieved is narrow, as illustrated in Figs. 3 and 4. In
Fig. 3, we compare the results for the same type of Hint
(Ising-like) and the same type of He (anisotropic
Heisenberg-like) but with different values of the model
parameters. In Fig. 4, we present results for different
types of Hint and He but for parameters within the same
range.

Environments that exhibit some form of frustration,
such as spin glasses or frustrated antiferromagnets, may

Ωi j,
α( )

∆i j,
α( )

Ωi j,
α( ) ∆i j,

α( )

be very effective in producing a high degree of entan-
glement between the two central spins; see Figs. 1–4.

The decoherence is most effective if the exchange
couplings between the system and the environment are
random (in a limited range) and anisotropic; see Figs. 3
and 4.

The details of the internal dynamics of the environ-
ment affect the maximum amount of entanglement that
can be achieved [9] and also affects the speed of the ini-
tial relaxation (cf. the curves in Figs. 3b–3e, Figs. 4a
and 4d, and Figs. 4b and 4c).

For the case in which there is strong decoherence,
for the same He and the same type of Hint, decreasing
the strength of Hint will reduce the relaxation to the fin-
ial state and the final state comes closer to the singlet
state (cf. the curves in Figs. 3a and 3c and Figs. 3d and
3f).

Earlier, simulations for the Ising model in a trans-
verse field showed that time-averaged distributions of
the energies of the central system and environment
agree with those of the canonical ensemble at some
effective temperature [13, 14]. Our results do not con-
tradict these findings but show that there are cases in
which the central system relaxes from a high-energy
state to its ground state, while the environment starts in
the ground state and ends up in a state with slightly
higher energy. As shown in Fig. 4 (e), this state is
extremely robust and shows very little fluctuations.

For the models under consideration, the efficiency
of the decoherence decreases drastically in the follow-
ing order: Spin glass (random long-range interactions
of both signs)—Frustrated antiferromagnet (triangular
lattice with nearest-neighbor interactions)—Bipartite
antiferromagnet (square lattice with nearest-neighbor

Minimum value of the correlation of the central spins and the energy of the whole system (which is conserved) as observed
during the time evolution corresponding to the curves listed in the first column. The correlations 〈S1 · S2〉  and the ground state
energy E0 of the whole system are obtained by numerical diagonalization of Hamiltonian Eq. (2)

〈Ψ(t)|H|Ψ(t)〉 E0 mint〈S1(t) · S2(t)〉 〈 S1 · S2〉0

Fig. 1 (a) –1.299 –1.829 –0.659 –0.723

Fig. 1 (b) –1.532 –2.065 –0.695 –0.721

Fig. 1 (c) –1.856 –2.407 –0.689 –0.696

Fig. 2 –4.125 –4.627 –0.744 –0.749

Fig. 3 (a) –1.490 –1.992 –0.746 –0.749

Fig. 3 (b) –0.870 –1.379 –0.260 –0.741

Fig. 3 (c) –1.490 –1.997 –0.737 –0.744

Fig. 3 (d) –2.654 –3.160 –0.742 –0.745

Fig. 3 (e) –7.791 –8.293 –0.716 –0.749

Fig. 3 (f) –3.257 –3.803 –0.713 –0.718

Fig. 4 (b) –0.884 –1.388 –0.424 –0.733

Fig. 4 (c) –1.299 –1.829 –0.659 –0.723

Fig. 4 (d) –1.299 –1.807 –0.741 –0.743

Fig. 4 (e) –1.843 –2.365 –0.738 –0.735
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interactions)—One-dimensional ring with nearest-
neighbor antiferromagnetic interactions. This can be
understood as follows. A change of the state of the cen-
tral system affects a group of spins in the environment.
The suppression of off-diagonal elements of the
reduced density matrix can be much more effective if
the group of disturbed spins is larger. The state of the
central system is the most flexible in the case of a cou-
pling to a spin glass for which, in the thermodynamic
limit, an infinite number of infinitely closed quasi-equi-
librium configurations exist [15, 16]. As a result, a very
small perturbation leads to a change of the system as a
whole. This may be considered as a quantum analog of
the phenomenon of structural relaxation in glasses.
This suggests that frustrated spin systems that are close
to the glassy state should provide extremely efficient
decoherence.

To conclude, we have demonstrated that frustrations
and, especially, glassiness of the spin environment
result in a very strong enhancement of its decohering
action on the central spin system. Our results convinc-
ingly show that this enhancement can be so strong that,
solely due to decoherence, a fully disentangled state
may evolve into a fully entangled state, even if the envi-
ronment contains a relatively small numbers of spins.
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